I am trying to fit different data set with different non-linear function that shared some parameters and it look something like this:
import matplotlib
from matplotlib import pyplot as plt
from scipy import optimize
import numpy as np
#some non-linear function
def Sigma1x(x,C11,C111,C1111,C11111):
return C11*x+1/2*C111*pow(x,2)+1/6*C1111*pow(x,3)+1/24*C11111*pow(x,4)
def Sigma2x(x,C12,C112,C1112,C11112):
return C12*x+1/2*C112*pow(x,2)+1/6*C1112*pow(x,3)+1/24*C11112*pow(x,4)
def Sigma1y(y,C12,C111,C222,C112,C1111,C1112,C2222,C12222):
return C12*y+1/2*(C111-C222+C112)*pow(y,2)+1/12*(C111+2*C1112-C2222)*pow(y,3)+1/24*C12222*pow(y,4)
def Sigma2y(y,C11,C222,C222,C2222):
return C11*y+1/2*C222*pow(y,2)+1/6*C2222*pow(y,3)+1/24*C22222*pow(y,4)
def Sigmaz(z,C11,C12,C111,C222,C112,C1111,C1112,C2222,C1122,C11111,C11112,C122222,C11122,C22222):
return (C11+C12)*z+1/2*(2*C111-C222+3*C112)*pow(z,2)+1/6*(3/2*C1111+4*C1112-1/2*C222+3*C1122)*pow(z,3)+\
1/24*(3*C11111+10*C11112-5*C12222+10*C11122-2*C22222)*pow(z,4)
# Experimental datasets
Xdata=np.loadtxt('x-direction.txt') #This contain x axis and two other dataset, should be fitted with Sigma1x and Sigma2x
Ydata=np.loadtxt('y-direction.txt') #his contain yaxis and two other dataset, should be fitted with Sigma1yand Sigma2y
Zdata=nploadtxt('z-direction.txt')#This contain z axis and one dataset fitted with Sigmaz
The question is how to use optimize.leastsq or other packages to fit the data with the appropriate function, knowing that they share multiple paramaters?
I was able to solve ( partially the initial question). I found symfit a very comprehensive and easy to use. So i wrote the following code
However, The resulting fit is very bad :
Any idea's how to improve the fit?