I attempted to run the code:
import pandas as pd
df = pd.read_csv('test.csv', sep=',', header=None, names=['datatable', 'col'])
def replace_letter(group):
letters = group.isin(['T', 'Q']) # select letters
group[letters] = int(group[~letters].max()) + 1 # replace by next max
return group
df['col'] = df.groupby('datatable').transform(replace_letter)
print df
On the data:
DatatableA,1
DatatableA,2
DatatableA,3
DatatableA,4
DatatableA,5
DatatableB,1
DatatableB,6
DatatableB,T
DatatableB,3
DatatableB,4
DatatableB,5
DatatableB,2
DatatableC,3
DatatableC,4
DatatableC,2
DatatableC,1
DatatableC,Q
DatatableC,5
DatatableC,T
Hoping to produce the following
DatatableA,1
DatatableA,2
DatatableA,3
DatatableA,4
DatatableA,5
DatatableB,1
DatatableB,6
DatatableB,7
DatatableB,3
DatatableB,4
DatatableB,5
DatatableB,2
DatatableC,3
DatatableC,4
DatatableC,2
DatatableC,1
DatatableC,6
DatatableC,5
DatatableC,6
and I received the traceback:
Traceback (most recent call last):
File "C:/test.py", line 11, in <module>
df['col'] = df.groupby('datatable').transform(replace_letter)
File "C:\Python27\lib\site-packages\pandas\core\groupby.py", line 1981, in transform
res = path(group)
File "C:\Python27\lib\site-packages\pandas\core\groupby.py", line 2006, in <lambda>
slow_path = lambda group: group.apply(lambda x: func(x, *args, **kwargs), axis=self.axis)
File "C:\Python27\lib\site-packages\pandas\core\frame.py", line 4416, in apply
return self._apply_standard(f, axis)
File "C:\Python27\lib\site-packages\pandas\core\frame.py", line 4491, in _apply_standard
raise e
ValueError: ("invalid literal for int() with base 10: 'col'", u'occurred at index col')
I am trying to replace the letter T or any other letter for that matter with the next highest integer for that table. The first table contains no errors, the second table contains 1 T and the third contains 2 x t's. Is there something I have used in correctly, but I have been meaning to use pandas more, as the library seems so useful for data manipulations.
Edit 1
It was indeed an issue with having a header, simply changing header
to =True
made it work. However I still cannot get this code to do what I want it to do.
import pandas as pd
df = pd.read_csv('test.csv', sep=',', header=True, names=['datatabletest', 'col'])
def replace_letter(group):
letters = group.isin(['T', 'Q']) # select letters
group[letters] = int(group[~letters].max()) + 1 # replace by next max
return group
df["duplicate"] = df['col']
print df
df['col'] = df.groupby('datatabletest').transform(replace_letter)
print df
I was hoping to duplicate the column so I have a copy of the original, changing the letters in only one of the columns. Can you see what I have done wrong?
I guess your csv file in fact contains a header, that is its first line is
datatable,col
. Then, when you specifyheader=None
, this header is loaded as a first row of a dataframe. You should either skip header withskiprows
paramether, or read it from file removingheader=None
.Compare those two examples:
But