I'm trying to calculate the Fourier Transform of the following Gaussian:
# sample spacing
dx = 1.0 / 1000.0
# Points
x1 = -5
x2 = 5
x = np.arange(x1, x2, dx)
def light_intensity():
return 10*sp.stats.norm.pdf(x, 0, 1)+0.1*np.random.randn(x.size)
fig, ax = plt.subplots()
ax.plot(x,light_intensity())
I create a new array in the spacial frequency domain (Fourier Transform of Gaussian is a Gaussian so these values should be similar). I plot and get this:
fig, ax = plt.subplots()
xf = np.arange(x1,x2,dx)
yf= np.fft.fftshift(light_intensity())
ax.plot(xf,np.abs(yf))
Why is it splitting into two peaks?
Advice:
np.fft.fft
Complete example:
Or, with noise:
Plots with symmetry
Alternatively, if you want to enjoy the symmetry in the frequency domain:
Or, with noise: