I use the fuzzy-c-means clustering implementation and I would like the data X to form the number of clusters i define in the algorithm(I beleive that is how it works). But the behavior is confusing.
cm = FCM(n_clusters=6)
cm.fit(X)
This code generates a plot with 4 labels - [0,2,4,6]
cm = FCM(n_clusters=4)
cm.fit(X)
This code generates a plot with 4 labels - [0,1,2,3]
I expect labels [0,1,2,3,4,5] when i initialize the cluster number to be 6.
code:
from fcmeans import FCM
from matplotlib import pyplot as plt
from seaborn import scatterplot as scatter
# fit the fuzzy-c-means
fcm = FCM(n_clusters=6)
fcm.fit(X)
# outputs
fcm_centers = fcm.centers
fcm_labels = fcm.u.argmax(axis=1)
# plot result
%matplotlib inline
f, axes = plt.subplots(1, 2, figsize=(11,5))
scatter(X[:,0], X[:,1], ax=axes[0])
scatter(X[:,0], X[:,1], ax=axes[1], hue=fcm_labels)
scatter(fcm_centers[:,0], fcm_centers[:,1], ax=axes[1],marker="s",s=200)
plt.show()
I'm using
fuzzy-c-means
version1.7.0
:Using synthetic data:
So, the
n_clusters
applied correctly.