I am trying to build a code to estimate evapotranspiration using satellite remote sensing data via google earth engine. This part of the code I couldn't debug, When I try to reduce "tao_sw" I get none value. Although "W", "pres" and "cos_theta" gives valid values.
import ee
# # Trigger the authentication flow.
# # ee.Authenticate()
# Initialize the library.
ee.Initialize()
def reducertest (img, aoi):
value_r = img.reduceRegion(
reducer= ee.Reducer.mean(),
geometry=aoi,
scale= 1000,
maxPixels=9e14
)
return value_r.getInfo()
# time of the study
start_date = '2018-01-20'
end_date = '2018-01-30'
year, month , _ = start_date.split('-')
print(year,month)
aoi = ee.Geometry.Polygon([
[
[
-120.02153301116874,
36.55933992273219
],
[
-120.04941370309581,
36.419636408472286
],
[
-119.77773905385078,
36.415462282458435
],
[
-119.78033260658853,
36.5588191094016
],
[
-120.02153301116874,
36.55933992273219
]
]
])
# landsat
image = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')\
.filterBounds(aoi)\
.filter(ee.Filter.date(start_date, end_date)).first()
# meteorology
time_start = image.get('system:time_start')
meteo_inst_source = 'ECMWF/ERA5_LAND/HOURLY'
DATASET = ee.ImageCollection(meteo_inst_source)
#LINEAR INTERPOLATION
TIME_START_NUM=ee.Number(time_start)
PREVIOUS_TIME=TIME_START_NUM.subtract(3*60*60*1000)
NEXT_TIME=TIME_START_NUM.add(3*60*60*1000)
PREVIOUS_IMAGE=(DATASET.filter(ee.Filter.date(PREVIOUS_TIME,TIME_START_NUM))
.limit(1, 'system:time_start', False).first())
NEXT_IMAGE=(DATASET.filter(ee.Filter.date(TIME_START_NUM,NEXT_TIME))
.limit(1, 'system:time_start', False).first())
IMAGE_PREVIOUS_TIME= ee.Number(PREVIOUS_IMAGE.get('system:time_start'))
IMAGE_NEXT_TIME=ee.Number(NEXT_IMAGE.get('system:time_start'))
DELTA_TIME=(TIME_START_NUM.subtract(IMAGE_PREVIOUS_TIME)).divide(IMAGE_NEXT_TIME.subtract(IMAGE_PREVIOUS_TIME))
tair_c = NEXT_IMAGE.select('temperature_2m')\
.subtract(PREVIOUS_IMAGE.select('temperature_2m'))\
.multiply(DELTA_TIME).add(PREVIOUS_IMAGE.select('temperature_2m'))\
.rename('AirT_G')
# SATURATED VAPOR PRESSURE [KPA]
esat = tair_c.expression(
'0.6108 * (exp((17.27 * T_air) / (T_air + 237.3)))', {'T_air': tair_c.subtract(273.15)})
# PRESSURE [PA] CONVERTED TO KPA
tdp = NEXT_IMAGE.select('dewpoint_temperature_2m')\
.subtract(PREVIOUS_IMAGE.select('dewpoint_temperature_2m'))\
.multiply(DELTA_TIME).add(PREVIOUS_IMAGE.select('dewpoint_temperature_2m'))\
.rename('tdp')
# ACTUAL VAPOR PRESSURE [KPA]
ea1 = tdp.expression(
'0.6108 * (exp((17.27 * T_air) / (T_air + 237.3)))',{
'T_air': tdp.subtract(273.15)})
# RELATIVE HUMIDITY (%)
rh = ea1.divide(esat).multiply(100).rename('RH_G')
# col_meteorology= get_meteorology(image, time_start)
T_air = tair_c.select('AirT_G')
# Resample
tair_c = tair_c.subtract(273.15).resample('bilinear')
# wind_med = wind_med.resample('bilinear')
rh = rh.resample('bilinear')
# swdown24h = i_Rs_24h.resample('bilinear')
# rn24h = i_Rn_24h.resample('bilinear')
###################################################################
#SRTM DATA ELEVATION
SRTM_ELEVATION ='USGS/SRTMGL1_003'
srtm = ee.Image(SRTM_ELEVATION).clip(aoi)
z_alt = srtm.select('elevation')
###################################################################
#ATMOSPHERIC PRESSURE [KPA]
#SHUTTLEWORTH (2012)
pres = image.expression(
'101.3 * ((293 - (0.0065 * Z))/ 293) ** 5.26 ', {
'Z' : z_alt}).rename('P_ATM')
#ACTUAL VAPOR PRESSURE (ea) [KPA]
ea = es.multiply(rh).divide(100).rename('EA')
#SATURATION VAPOR PRESSURE (es) [KPA]
es = image.expression(
' 0.6108 *(exp( (17.27 * T_air) / (T_air + 237.3)))', {
'T_air': T_air}).rename('ES')
#WATER IN THE ATMOSPHERE [mm]
#Garrison and Adler (1990)
W = image.expression(
'(0.14 * EA * PATM) + 2.1', {
'PATM' : pres,
'EA' : ea}).rename('W_ATM')
#SOLAR ZENITH ANGLE OVER A HORZONTAL SURFACE
azimuth_angle = image.get('SUN_AZIMUTH')
SUN_ELEVATION=ee.Number(90).subtract(azimuth_angle)
solar_zenith = ee.Number(90).subtract(SUN_ELEVATION)
degree2radian = 0.01745
solar_zenith_radians = solar_zenith.multiply(degree2radian)
cos_theta = solar_zenith_radians.cos()
#BROAD-BAND ATMOSPHERIC TRANSMISSIVITY (tao_sw)
#ASCE-EWRI (2005)
tao_sw = image.expression(
'0.35 + 0.627 * exp(((-0.00146 * P)/(Kt * cos_theta)) - (0.075 * (W / cos_theta)**0.4))', {
'P' : pres,
'W': W,
'Kt' : ee.Number(1),
'cos_theta' : cos_theta}).rename('Tao_sw')
t_w = reducertest(W,aoi) ###################################
t_pres = reducertest(pres,aoi) ###################################
t_cos_theta = cos_theta.getInfo() ###################################
t_tao_sw = reducertest(tao_sw,aoi) ###################################
print(t_tao_sw)
I tried changing the aoi to include the whole image and still got none value