Question
HI, I am implementing CGAN in TensorFlow. Please help me understand the cause of the error and how to resolve it.
Code
def train(dataset, epochs): for epoch in range(epochs):
start = time.time()
for image_batch in dataset:
img = tf.cast(image_batch, tf.float32)
imgs = normalization(img)
train_step(imgs,target)
print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start))
train(ds, 200)
Normalization Function Code:
@tf.function
def normalization(tensor):
tensor = tf.image.resize(
tensor, (128,128))
tensor = tf.subtract(tf.divide(tensor, 127.5), 1)
return tensor
Error
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-24-bf631b0ce503> in <module>
10
11
---> 12 train(ds, 200)
<ipython-input-24-bf631b0ce503> in train(dataset, epochs)
3 start = time.time()
4 for image_batch in dataset:
----> 5 img = tf.cast(image_batch, tf.float32)
6 imgs = normalization(img)
7 train_step(imgs,target)
E:\Users\Asus\anaconda3\lib\site-packages\tensorflow\python\util\dispatch.py in wrapper(*args, **kwargs)
199 """Call target, and fall back on dispatchers if there is a TypeError."""
200 try:
--> 201 return target(*args, **kwargs)
202 except (TypeError, ValueError):
203 # Note: convert_to_eager_tensor currently raises a ValueError, not a
E:\Users\Asus\anaconda3\lib\site-packages\tensorflow\python\ops\math_ops.py in cast(x, dtype, name)
919 # allows some conversions that cast() can't do, e.g. casting numbers to
920 # strings.
--> 921 x = ops.convert_to_tensor(x, name="x")
922 if x.dtype.base_dtype != base_type:
923 x = gen_math_ops.cast(x, base_type, name=name)
E:\Users\Asus\anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, dtype_hint, ctx, accepted_result_types)
1497
1498 if ret is None:
-> 1499 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
1500
1501 if ret is NotImplemented:
E:\Users\Asus\anaconda3\lib\site-packages\tensorflow\python\ops\array_ops.py in _autopacking_conversion_function(v, dtype, name, as_ref)
1500 elif dtype != inferred_dtype:
1501 v = nest.map_structure(_cast_nested_seqs_to_dtype(dtype), v)
-> 1502 return _autopacking_helper(v, dtype, name or "packed")
1503
1504
E:\Users\Asus\anaconda3\lib\site-packages\tensorflow\python\ops\array_ops.py in _autopacking_helper(list_or_tuple, dtype, name)
1406 # checking.
1407 if all(isinstance(elem, core.Tensor) for elem in list_or_tuple):
-> 1408 return gen_array_ops.pack(list_or_tuple, name=name)
1409 must_pack = False
1410 converted_elems = []
E:\Users\Asus\anaconda3\lib\site-packages\tensorflow\python\ops\gen_array_ops.py in pack(values, axis, name)
6456 return _result
6457 except _core._NotOkStatusException as e:
-> 6458 _ops.raise_from_not_ok_status(e, name)
6459 except _core._FallbackException:
6460 pass
E:\Users\Asus\anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in raise_from_not_ok_status(e, name)
6841 message = e.message + (" name: " + name if name is not None else "")
6842 # pylint: disable=protected-access
-> 6843 six.raise_from(core._status_to_exception(e.code, message), None)
6844 # pylint: enable=protected-access
6845
E:\Users\Asus\anaconda3\lib\site-packages\six.py in raise_from(value, from_value)
**InvalidArgumentError: cannot compute Pack as input #1(zero-based) was expected to be a uint8 tensor but is a int64 tensor [Op:Pack] name: x**
Attempts I made in resolving this issue:
I tried changing
tensor = tf.subtract(tf.divide(tensor, 127.5), 1)
to
tensor = tf.subtract(tf.divide(tensor, 127), 1)
Moreover,
img = tf.cast(image_batch, tf.float32)
to
img = tf.cast(image_batch, tf.int64)
But the error remained same. Any help shall be highly appreciated.