Getting error while implementing DCGAN in pytorch: Kernel size can't be greater than actual input size

450 Views Asked by At

I have been trying to train a DCGAN implementation in PyTorch. I am getting the following error:

RuntimeError: Calculated padded input size per channel: (3 x 3). Kernel size: (4 x 4). Kernel size can't be greater than actual input size

I have modified the discriminator network defined in this implementation.

The modified discriminator network is as follows:

self.main = nn.Sequential(
           
            nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            
            nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 2),
            nn.LeakyReLU(0.2, inplace=True),
            
            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),
            
            nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
            
            nn.Conv2d(ndf * 8, ndf * 8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
            
            nn.Conv2d(ndf * 8, ndf * 16, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 16),
            nn.LeakyReLU(0.2, inplace=True),
            
            nn.Conv2d(ndf * 16, ndf * 16, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 16),
            nn.LeakyReLU(0.2, inplace=True),
            
            nn.Conv2d(ndf * 16, 1, 4, 1, 0, bias=False),
            nn.Sigmoid()
        )

Thanks in advance!

0

There are 0 best solutions below