I am using the 'bife' package to run the fixed effect logit model in R. However, I cannot compute any goodness-of-fit to measure the model's overall fit given the result I have below. I would appreciate if I can know how to measure the goodness-of-fit given this limited information. I prefer chi-square test but still cannot find a way to implement this either.
---------------------------------------------------------------
Fixed effects logit model
with analytical bias-correction
Estimated model:
Y ~ X1 +X2 + X3 + X4 + X5 | Z
Log-Likelihood= -9153.165
n= 20383, number of events= 5104
Demeaning converged after 6 iteration(s)
Offset converged after 3 iteration(s)
Corrected structural parameter(s):
Estimate Std. error t-value Pr(> t)
X1 -8.67E-02 2.80E-03 -31.001 < 2e-16 ***
X2 1.79E+00 8.49E-02 21.084 < 2e-16 ***
X3 -1.14E-01 1.91E-02 -5.982 2.24E-09 ***
X4 -2.41E-04 2.37E-05 -10.171 < 2e-16 ***
X5 1.24E-01 3.33E-03 37.37 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
AIC= 18730.33 , BIC= 20409.89
Average individual fixed effects= 1.6716
---------------------------------------------------------------
Let the DGP be
so that we will be under the null hypothesis. As it says in
?bife
, when there is no bias-correction, everything is the same as withglm
, except for the speed. So let's start withglm
.One way to perform the LR test is with
But we may also do it manually,
Now let's proceed with
bife
.Here
modBife
is the full specification andmodBife0
is only with fixed effects. For convenience, letfor loglikelihood extraction. Then we may compare
modBife0
withmodBife
as inwhile
modGLM0
andmodBife
can be compared by runningwhich gives the same result as before, even though with
bife
we, by default, have bias correction.Lastly, as a bonus, we may simulate data and see it the test works as it's supposed to. 1000 iterations below show that both test (since two tests are the same) indeed reject as often as they are supposed to under the null.