I've been trying to wrap my head around foldr and foldl for quite some time, and I've decided the following question should settle it for me. Suppose you pass the following list [1,2,3] into the following four functions:
a = foldl (\xs y -> 10*xs -y) 0
b = foldl (\xs y -> y - 10 * xs) 0
c = foldr (\y xs -> y - 10 * xs) 0
d = foldr (\y xs -> 10 * xs -y) 0
The results will be -123, 83, 281, and -321 respectively.
Why is this the case? I know that when you pass [1,2,3,4] into a function defined as
f = foldl (xs x -> xs ++ [f x]) []
it gets expanded to ((([] ++ [1]) ++ [2]) ++ [3]) ++ [4]
In the same vein, What do the above functions a, b, c, and d get expanded to?
I think the two images on Haskell Wiki's fold page explain it quite nicely.
Since your operations are not commutative, the results of
foldr
andfoldl
will not be the same, whereas in a commutative operation they would:Using
scanl
andscanr
to get a list including the intermediate results is a good way to see what happens:So in the first case we have (((1 * 1) * 2) * 3), whereas in the second case it's (1 * (2 * (1 * 3))).