Hilbert curve using turtle graphics and recursion

3.8k Views Asked by At

I'm trying to implement an L-System generated Hilbert curve ,making use of python turtle graphics and recursion. My code seems to be working for the first two levels of recursion n=1 and n=2 but beyond that , the graphics just entangled (although I´m able to observe further modules within them), and I can´t seem to grasp what might be wrong here, do I need some intermediate steps to regenerate the Hilbert modules for deeper levels of recursion? Please see my code below , its relatively simple:

import turtle

def Hilbert_curve(A,rule,t,n):

    if n>=1:
        if rule:
            t.left(90)
            Hilbert_curve(A,not rule,t, n-1)
            t.forward(A)
            t.right(90)
            Hilbert_curve(A, rule,t, n-1)
            t.forward(A)
            Hilbert_curve(A,rule,t, n-1)
            t.right(90)
            t.forward(A)
            Hilbert_curve(A,not rule,t, n-1)
            t.left(90)
        else:
            t.right(90)
            Hilbert_curve(A,rule,t, n-1)
            t.forward(A)
            t.left(90)
            Hilbert_curve(A,not rule,t, n-1)
            t.forward(A)
            Hilbert_curve(A,not rule,t, n-1)
            t.left(90)
            t.forward(A)
            Hilbert_curve(A, rule,t, n-1)
            t.right(90)

def main():
    A=10
    t=turtle.Turtle()
    my_win=turtle.Screen()
    n=2
    rule=True
    Hilbert_curve(A,rule,t,n)
    my_win.exitonclick()

main()

Hilbert n=2

Hilbert n=3

1

There are 1 best solutions below

1
cdlane On

The problem is with your else clause. The rule is already inverted coming in to the function, so you need to treat the rule the same as the then clause:

    else:
        t.right(90)
        Hilbert_curve(A, not rule, t, n - 1)
        t.forward(A)
        t.left(90)
        Hilbert_curve(A, rule, t, n - 1)
        t.forward(A)
        Hilbert_curve(A, rule, t, n - 1)
        t.left(90)
        t.forward(A)
        Hilbert_curve(A, not rule, t, n - 1)
        t.right(90)

However, if we change rule from a boolean to a number, parity, that's either 1 or -1, and then multiply parity by the angle, we can eliminate one of the two clauses of the orignal if statement:

from turtle import Screen, Turtle

def hilbert_curve(turtle, A, parity, n):

    if n < 1:
        return

    turtle.left(parity * 90)
    hilbert_curve(turtle, A, - parity, n - 1)
    turtle.forward(A)
    turtle.right(parity * 90)
    hilbert_curve(turtle, A, parity, n - 1)
    turtle.forward(A)
    hilbert_curve(turtle, A, parity, n - 1)
    turtle.right(parity * 90)
    turtle.forward(A)
    hilbert_curve(turtle, A, - parity, n - 1)
    turtle.left(parity * 90)

screen = Screen()

yertle = Turtle()
yertle.speed('fastest')  # because I have no patience

hilbert_curve(yertle, 10, 1, 4)

screen.exitonclick()

enter image description here