When I run the below code, I get a figure with gradient color (from black to orange). Please look at the attached figure. Whereas I want to get a figure only with single color, orange (not figure with a gradient color). How can I do that?
My code:
#!/usr/bin/python3
import numpy as np
import pylab as plot
import matplotlib.pyplot as plt
import numpy, scipy, pylab, random
from matplotlib.ticker import MultipleLocator
import matplotlib as mpl
from matplotlib.ticker import MaxNLocator
import seaborn as sns
import pandas as pd
fig, ax = plt.subplots(figsize=(4, 2))
df = pd.read_csv('input.txt', sep="\s\s+", engine='python')
sns.kdeplot(data=df, label = "s1", color = "orange", cmap=None)
plt.xlabel('x', fontsize=7)
plt.ylabel('y', fontsize=7)
for axis in ['top','bottom','left','right']:
ax.spines[axis].set_linewidth(0.5)
plt.savefig("plot.png", dpi=300, bbox_inches='tight')
input.txt:
0.43082 0.45386
0.35440 0.91632
0.16962 0.85031
0.07069 0.54742
0.31648 1.06689
0.57874 1.17532
0.18982 1.01678
0.31012 0.54656
0.31133 0.81658
0.53612 0.50940
0.36633 0.83130
0.37021 0.74655
0.28335 1.30949
0.11517 0.63141
0.24908 1.04403
-0.28633 0.46673
-0.13251 0.33448
-0.00568 0.53939
-0.03536 0.76191
0.24695 0.92592

Using Seaborn v0.11.2.
Solution:
The expected output is obtained if you specify
xandyarguments ofseaborn.kdeplotas the column names of the DataFrame (after appropriately reading the data as suggested in Timeless's answer, i.e., by specifyingheader=Noneinpd.read_csv):df:Expected figure output:
sns.kdeplotplots distribution of each column in the data whendatais passed to it without specifyingxandy:The code in the question throws an error:
If you now don't pass
cmaptosns.kdeplotand use:it returns (notice the legend labels of the line plots):