I'm trying wrap my heard around P, NP, NP-Complete and NP-Hard in an intuitive way so that I don't have to remember their definitions.
In the following image (the left hand scenario, P != NP), there's an overlapping area between NP-Complete and NP-Hard. Does it mean that some problems are both NP-Complete and NP-Hard? I find that contradictory, according to this particular answer: What are the differences between NP, NP-Complete and NP-Hard?.
The table in the above link says an NP-Complete problem is verifiable in polynomial time and an NP-Hard problem is not. So how can there be an overlap?
Part of the definition of NP-completeness is being NP hard. Therefore, every NP-complete problem is NP-hard. This is also reflected by both of your graphs.