Dipping my toe into the waters of dependent types, I had a crack at the canonical "list with statically-typed length" example.
{-# LANGUAGE DataKinds, GADTs, KindSignatures #-}
-- a kind declaration
data Nat = Z | S Nat
data SafeList :: (Nat -> * -> *) where
Nil :: SafeList Z a
Cons :: a -> SafeList n a -> SafeList (S n) a
-- the type signature ensures that the input list has at least one element
safeHead :: SafeList (S n) a -> a
safeHead (Cons x xs) = x
This seems to work:
ghci> :t Cons 5 (Cons 3 Nil)
Cons 5 (Cons 3 Nil) :: Num a => SafeList ('S ('S 'Z)) a
ghci> safeHead (Cons 'x' (Cons 'c' Nil))
'x'
ghci> safeHead Nil
Couldn't match type 'Z with 'S n0
Expected type: SafeList ('S n0) a0
Actual type: SafeList 'Z a0
In the first argument of `safeHead', namely `Nil'
In the expression: safeHead Nil
In an equation for `it': it = safeHead Nil
However, in order for this data-type to be actually useful, I should be able to build it from run-time data for which you don't know the length at compile time. My naïve attempt:
fromList :: [a] -> SafeList n a
fromList = foldr Cons Nil
This fails to compile, with the type error:
Couldn't match type 'Z with 'S n
Expected type: a -> SafeList n a -> SafeList n a
Actual type: a -> SafeList n a -> SafeList ('S n) a
In the first argument of `foldr', namely `Cons'
In the expression: foldr Cons Nil
In an equation for `fromList': fromList = foldr Cons Nil
I understand why this is happening: the return type of Cons
is different for each iteration of the fold - that's the whole point! But I can't see a way around it, probably because I've not read deeply enough into the subject. (I can't imagine all this effort is being put into a type system that is impossible to use in practice!)
So: How can I build this sort of dependently-typed data from 'normal' simply-typed data?
Following @luqui's advice I was able to make fromList
compile:
data ASafeList a where
ASafeList :: SafeList n a -> ASafeList a
fromList :: [a] -> ASafeList a
fromList = foldr f (ASafeList Nil)
where f x (ASafeList xs) = ASafeList (Cons x xs)
Here's my attempt to unpack the ASafeList
and use it:
getSafeHead :: [a] -> a
getSafeHead xs = case fromList xs of ASafeList ys -> safeHead ys
This causes another type error:
Couldn't match type `n' with 'S n0
`n' is a rigid type variable bound by
a pattern with constructor
ASafeList :: forall a (n :: Nat). SafeList n a -> ASafeList a,
in a case alternative
at SafeList.hs:33:22
Expected type: SafeList ('S n0) a
Actual type: SafeList n a
In the first argument of `safeHead', namely `ys'
In the expression: safeHead ys
In a case alternative: ASafeList ys -> safeHead ys
Again, intuitively it makes sense that this would fail to compile. I can call fromList
with an empty list, so the compiler has no guarantee that I'll be able to call safeHead
on the resulting SafeList
. This lack of knowledge is roughly what the existential ASafeList
captures.
Can this problem be solved? I feel like I might have walked down a logical dead-end.
Never throw anything away.
If you're going to take the trouble to crank along a list to make a length-indexed list (known in the literature as a "vector"), you may as well remember its length.
So, we have
but we can also give a run time representation to static lengths. Richard Eisenberg's "Singletons" package will do this for you, but the basic idea is to give a type of run time representations for static numbers.
Crucially, if we have a value of type
Natty n
, then we can interrogate that value to find out whatn
is.Hasochists know that run time representability is often so boring that even a machine can manage it, so we hide it inside a type class
Now we can give a slightly more informative existential treatment of the length you get from your lists.
You get the same code as the length-destroying version, but you can grab a run time representation of the length anytime you like, and you don't need to crawl along the vector to get it.
Of course, if you want the length to be a
Nat
, it's still a pain that you instead have aNatty n
for somen
.It's a mistake to clutter one's pockets.
Edit I thought I'd add a little, to address the "safe head" usage issue.
First, let me add an unpacker for
LenList
which gives you the number in your hand.And now suppose I define
enforcing the safety property. If I have a run time representation of the length of a vector, I can look at it to see if
vhead
applies.So you look at one thing, and in doing so, learn about another.