So I have the code below. It perfectly calculates all the y-points of the polynomial (and prints them to plot with gnuplot), but how do i get the resulting polynomial (1-x² in this case)?
void twoDegreePoly() {
int n = 3;
double x[n],y[n];
printf ("#m=0,S=16\n");
for (int i=0; i<n ;i++) {
x[i] = ((double)2*i)/2 -1;
y[i] = f(x[i]);
printf ("%g %g\n", x[i], y[i]);
}
printf ("#m=1,S=0\n");
gsl_interp_accel *acc = gsl_interp_accel_alloc ();
const gsl_interp_type *t = gsl_interp_polynomial;
gsl_interp* poly = gsl_interp_alloc(t,n);
gsl_interp_init (poly, x, y,n);
for (double xi=x[0]; xi<x[n-1]; xi+= 0.01) {
double yi = gsl_interp_eval (poly, x, y, xi, acc);
printf ("%g %g\n", xi, yi);
}
}
After a quick scan over the documentation, it doesn't seem that such a feature is available in the GSL. This could be caused by two reasons: first, getting polynomial coeffcients is special to this interpolation method doesn't fit well into the general design (which can handle arbitrary functions). Second, citing Numerical Recipes:
The reason for this is that in principle, calculating the coefficients involves solving a linear system with a Vandermonde matrix, which is highly ill-conditioned.
Still, Numerical Recipes gives a routine
polcoe
by which you can obtain the interpolating polynomial. You can find it in chapter 3.5. in the free second edition.