I am writing a maze generation algorithm, and this wikipedia article caught my eye. I decided to implement it in java, which was a cinch. The problem I am having is that while a maze-like picture is generated, the maze often is not solvable and is not often interesting. What I mean by interesting is that there are a vast number of unreachable places and often there are many solutions.
I implemented the 1234/3 rule (although is is changeable easily, see comments for an explanation) with a roughly 50/50 distribution in the start. The mazes always reach an equilibrium where there is no change between t-steps.
My question is, is there a way to guarantee the mazes solvability from a fixed start and endpoint? Also, is there a way to make the maze more interesting to solve (fewer/one solution and few/no unreachable places)? If this is not possible with cellular automata, please tell me. Thank you.
I don't think it's possible to ensure a solvable, interesting maze through simple cellular automata, unless there's some specific criteria that can be placed on the starting state. The fact that cells have no knowledge of the overall shape because each cell won't be able to coordinate with the group as a whole.
If you're insistent on using them, you could do some combination of modification and pathfinding after generation is finished, but other methods (like the ones shown in the Wikipedia article or this question) are simpler to implement and won't result in walls that take up a whole cell (unless you want that).