How do I reconstruct a mesh starting from ground truth poses and depth maps in Open3D?

342 Views Asked by At

I'm trying to test a custom 3D reconstruction pipeline that receives ground truth depth maps as input:

To see the full code you can proceed to the end of the question, now I will just outline my approach without getting into the details.

Suppose I have a mesh

bunny_mesh = o3d.data.BunnyMesh()
mesh = o3d.io.read_triangle_mesh(bunny_mesh.path)

And I extract some poses using the p key while visualizing the mesh with o3d.visualization.draw_geometries([mesh]).

enter image description here

Then I create a trajectory by linearly interpolating subsequent poses. Then, at each pose I extract the depth information through depth = np.array(vis.capture_depth_float_buffer(True)) and I save it to create a dataset that looks like this:

bunny-depths

(this is just a portion of the dataset)

Finally, the code to reconstruct the mesh looks like the following

VOLUME_SIZE = 0.5 
N_VOXELS_PER_SIDE = 1440
SDF_TRUNC = 3 * VOLUME_SIZE / N_VOXELS_PER_SIDE # 3

volume = o3d.pipelines.integration.ScalableTSDFVolume(
    voxel_length= VOLUME_SIZE / N_VOXELS_PER_SIDE,
    sdf_trunc=SDF_TRUNC,
    color_type=o3d.pipelines.integration.TSDFVolumeColorType.RGB8
)

for depth,pose in zip(depth_maps, poses):
  color = ... # Create dummy rgb image
  rgbd = o3d.geometry.RGBDImage.create_from_color_and_depth(
              o3d.geometry.Image(color),
              o3d.geometry.Image(depth),
              depth_trunc=1.0, 
              convert_rgb_to_intensity=False,
              depth_scale = 1.0
          )
  volume.integrate(
    rgbd,
    intrinsics, # the intrinsics were retrieved from the previously loaded poses  
    pose,
  )

And this is what I obtain:

My question is: How can I obtain an output mesh that is as similar as possible to the original one? Why the poses extracted from the visualizer seem to not work when trying to integrate the TSDF volume?

FULL CODE

  • Load mesh and create key poses
bunny_mesh = o3d.data.BunnyMesh()
mesh = o3d.io.read_triangle_mesh(bunny_mesh.path)
o3d.visualization.draw_geometries([mesh])
# create poses by pressing 'p' in correspondence of different views of the mesh
  • Create trajectory from poses

TRAJECTORY_PATH = "path/to/output/trajectory.json"
FPS = 30
NUM_FRAMES_BETWEEN_POSES = FPS * 5

poses = ... # Ordered list of poses paths (obtained with the 'p' key in the visualizer)

fx = 935.3074360871938
fy = 935.3074360871938
cx = 959.5
cy = 539.5
width = 1920
height = 1080
intrinsic = o3d.camera.PinholeCameraIntrinsic(
    width,
    height,
    fx,
    fy,
    cx,
    cy
)

for i in tqdm(range(1, len(poses))):
    pose_a = poses[i-1]
    pose_b = poses[i]
    with open(pose_a) as f_a:
        x = json.load(f_a)
        extrinsic_matrix_a = np.array(x["extrinsic"])
    with open(pose_b) as f_b:
        x = json.load(f_b)
        extrinsic_matrix_b = np.array(x["extrinsic"])
        
    extrinsic_matrix_list = np.linspace(extrinsic_matrix_a,extrinsic_matrix_b,N_FRAMES_BETWEEN_POSES)
    
    for j in range(len(extrinsic_matrix_list)):
        p = o3d.camera.PinholeCameraParameters()
        p.intrinsic = intrinsic
        p.extrinsic = np.array(extrinsic_matrix_list[j]).reshape((4,4)).T
        params.append(p)
        

trajectory.parameters = params

if os.path.isfile(TRAJECTORY_PATH):
    os.remove(TRAJECTORY_PATH)
o3d.io.write_pinhole_camera_trajectory(TRAJECTORY_PATH, trajectory)

print(f"Traejctory saved @ {TRAJECTORY_PATH}")
  • Create depth maps

EXTENSIONS = "pfm"
OUTPUT_DEPTH_MAPS_FOLDER = "path/to/an/empty/folder/"
MINIMUM_DEPTH_VALUE = 0.0008 
MAXIMUM_DEPTH_VALUE = 0.25

def custom_draw_geometry_with_camera_trajectory(pcd):
    
    custom_draw_geometry_with_camera_trajectory.index = -1
    custom_draw_geometry_with_camera_trajectory.trajectory = o3d.io.read_pinhole_camera_trajectory(TRAJECTORY_PATH)
    custom_draw_geometry_with_camera_trajectory.vis = o3d.visualization.Visualizer()
    
    if os.path.isdir(OUTPUT_DEPTH_MAPS_FOLDER):
        print("Removing old depth maps...")
        for pth in tqdm(glob.glob(os.path.join(OUTPUT_DEPTH_MAPS_FOLDER,f"*.{EXTENSION}"))):
            os.remove(pth)
    else:
        os.makedirs(OUTPUT_DEPTH_MAPS_FOLDER)

    def move_forward(vis):
        ctr = vis.get_view_control()
        glb = custom_draw_geometry_with_camera_trajectory
        if glb.index >= 0:
            depth = np.array(vis.capture_depth_float_buffer(True))
            depth[depth < MINIMUM_DEPTH_VALUE] = 0.0
            depth[depth > MAXIMUM_DEPTH_VALUE] = 0.0
            f_name = os.path.join(OUTPUT_DEPTH_MAPS_FOLDER,"{:06d}_d".format(glb.index) + f".{EXTENSION}")
            res = cv2.imwrite(f_name,depth.astype(np.float32))
            assert res
        glb.index = glb.index + 1
        
        if glb.index < len(glb.trajectory.parameters):     
            ctr.convert_from_pinhole_camera_parameters(
                glb.trajectory.parameters[glb.index]
            )
        else:
            custom_draw_geometry_with_camera_trajectory.vis.\
                    register_animation_callback(None)
        return False


    vis = custom_draw_geometry_with_camera_trajectory.vis
    vis.create_window(width = width, height = height)
    vis.add_geometry(pcd)
    vis.register_animation_callback(move_forward)
    print("Running...")
    vis.run()
    vis.destroy_window()
custom_draw_geometry_with_camera_trajectory(mesh)
  • Create a video for a visual check
def create_video(paths: List[str], output_path: str, fps: int = 24):
    # paths should be already sorted.
    assert "." in output_path and output_path.split(".")[-1] == "mp4"
    shape = cv2.imread(paths[0], cv2.IMREAD_UNCHANGED).shape
    if len(shape) == 3:
        height, width, channels = shape
    elif len(shape) == 2:
        height, width = shape
        channels = 1
    else:
        raise ValueError("Wrong shape")
    # choose codec according to format needed
    fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
    video = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
    for path in tqdm(paths):
        img = cv2.imread(path,cv2.IMREAD_UNCHANGED)/SCALING_FACTOR
        img = img / MAXIMUM_DEPTH_VALUE
        img = img.reshape(HEIGHT,WIDTH,1)*255
        img = img.astype(np.uint8)
        if channels==1:
            img  = cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)
        video.write(img)
    video.release()
paths = sorted(glob.glob(os.path.join(OUTPUT_DEPTH_MAPS_FOLDER,f"*.{EXTENSION}")))
create_video(paths,OUTPUT_VIDEO_PATH,FPS)
  • Create TSDF Volume and extract mesh
# Retrieve GT poses
with open(TRAJECTORY_PATH) as f:
    gt_json = json.load(f)
poses_gt = []
for param in tqdm(gt_json["parameters"]):
    p = np.array(param["extrinsic"]).reshape((4,4)).T
    poses_gt.append(p)
print(f"Retrieved {len(poses_gt)} poses for {TARGET_NAME}")

# Initialize TSDF Volume
VOLUME_SIZE = 0.5 

N_VOXELS_PER_SIDE = 1440
SDF_TRUNC = 3 * VOLUME_SIZE / N_VOXELS_PER_SIDE 

volume = o3d.pipelines.integration.ScalableTSDFVolume(
    voxel_length= VOLUME_SIZE / N_VOXELS_PER_SIDE,
    sdf_trunc=SDF_TRUNC,
    color_type=o3d.pipelines.integration.TSDFVolumeColorType.RGB8
)

n = len(poses_gt)
assert len(depth_map_paths) == n 


for i in tqdm(range(n)):
   
    path = depth_map_paths[i]
    depth = cv2.imread(path,cv2.IMREAD_UNCHANGED)
    pose = poses_gt[i]

    color = np.zeros((depth.shape[0], depth.shape[1], 3)).astype(np.uint8)
    color[depth > 0.0 ] = 100
    
    rgbd = o3d.geometry.RGBDImage.create_from_color_and_depth(
            o3d.geometry.Image(color),
            o3d.geometry.Image(depth),
            depth_trunc=1.0,
            convert_rgb_to_intensity=False,
            depth_scale = 1.0
        )
    
    if USE_GT_POSES:
        extr = pose
    else:
        extr = np.linalg.inv(pose)
        
    volume.integrate(
        rgbd,
        INTRINSICS, # o3d.camera.PinholeCameraIntrinsic(o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault),
        extr,
    )
    old_depth = depth
# Extract mesh
output_mesh = volume.extract_triangle_mesh()
output_mesh.compute_vertex_normals()
o3d.io.write_triangle_mesh("output.ply", output_mesh)
0

There are 0 best solutions below