In a multi-class classification problem (including 15 classes), I want to store recall_scores (or precision_score).
How can I store recall_scores in a dictionary to access the value of each class?
clf = RandomForestClassifier(n_estimators=30)
X_train, X_test, y_train, y_test = data
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
labels = list(set(y_pred))
recall_scores = sklearn.metrics.recall_score(y_test, y_pred, average=None, labels=labels, zero_division=1)
Although I have set the labels attribute, I can not recognize the value of each class.
This is what I got:
[50.0, 100.0, 75.0, 75.0, 100.0, 100.0, 100.0, 100.0, 75.0, 75.0, 75.0, 100.0, 100.0, 75.0, 100.0]
But this is what I want:
{'A': 50.0, 'B': 100.0, 'C': 75.0, 'D': 75.0, 'E': 100.0,
'F': 100.0, 'G': 100.0, 'H': 100.0, 'I': 75.0, 'J': 75.0,
'K': 75.0, 'L': 100.0, 'M': 100.0, 'N': 75.0, 'O': 100.0}