How to assign manually colors to each data group

91 Views Asked by At

Could someone help me in assigning a manual colour to each group? I want to use these two colours for my data #F96167 for beer, and #FCE77D for Whisky. Also, in the last graph, I would like different plot symbols (e.g. ∆ for Beer, O for Whisky) for each group.

library(rgeos)
#> Loading required package: sp
#> rgeos version: 0.5-9, (SVN revision 684)
#>  GEOS runtime version: 3.9.1-CAPI-1.14.2 
#>  Please note that rgeos will be retired by the end of 2023,
#> plan transition to sf functions using GEOS at your earliest convenience.
#>  GEOS using OverlayNG
#>  Linking to sp version: 1.5-0 
#>  Polygon checking: TRUE
library(sp)
library(vegan)
#> Loading required package: permute
#> Loading required package: lattice
#> This is vegan 2.6-2
library(tidyverse)
library(Momocs)
#> 
#> Attaching package: 'Momocs'
#> The following objects are masked from 'package:dplyr':
#> 
#>     arrange, combine, filter, mutate, rename, sample_frac, sample_n,
#>     select, slice
#> The following object is masked from 'package:tidyr':
#> 
#>     chop
#> The following object is masked from 'package:stats':
#> 
#>     filter
library(caret)
#> 
#> Attaching package: 'caret'
#> The following object is masked from 'package:purrr':
#> 
#>     lift
#> The following object is masked from 'package:vegan':
#> 
#>     tolerance
library(doParallel)
#> Loading required package: foreach
#> 
#> Attaching package: 'foreach'
#> The following objects are masked from 'package:purrr':
#> 
#>     accumulate, when
#> Loading required package: iterators
#> Loading required package: parallel
library(xlsx)
library(foreach)
library(broom)
library(MASS)
#> 
#> Attaching package: 'MASS'
#> The following object is masked from 'package:Momocs':
#> 
#>     select
#> The following object is masked from 'package:dplyr':
#> 
#>     select
library(scales)
#> 
#> Attaching package: 'scales'
#> The following object is masked from 'package:Momocs':
#> 
#>     rescale
#> The following object is masked from 'package:purrr':
#> 
#>     discard
#> The following object is masked from 'package:readr':
#> 
#>     col_factor
library(RColorBrewer)
library(ggspatial)

data(bot)
bot
#> Out (outlines)
#>   - 40 outlines, 162 +/- 21 coords (in $coo)
#>   - 2 classifiers (in $fac): 
#> # A tibble: 40 × 2
#>   type   fake 
#>   <fct>  <fct>
#> 1 whisky a    
#> 2 whisky a    
#> 3 whisky a    
#> 4 whisky a    
#> 5 whisky a    
#> 6 whisky a    
#> # … with 34 more rows
#>   - also: $ldk
panel(bot, fac="type", names=TRUE)

bot.f <- efourier(bot, nb.h=10)
#> 'norm=TRUE' is used and this may be troublesome. See ?efourier
bot.f
#> An OutCoe object [ elliptical Fourier analysis ]
#> --------------------
#>  - $coe: 40 outlines described, 10 harmonics
#> # A tibble: 40 × 2
#>   type   fake 
#>   <fct>  <fct>
#> 1 whisky a    
#> 2 whisky a    
#> 3 whisky a    
#> 4 whisky a    
#> 5 whisky a    
#> 6 whisky a    
#> # … with 34 more rows
# mean shape
ms_ <- MSHAPES(bot.f, fac="type")
ms_ <- ms_$shp
datams_<-rbind(data.frame(ms_$beer, Group="Beer"),
               data.frame(ms_$whisky, Group="Whisky"))

ggplot(datams_)+theme_bw()+geom_path( aes(x,y, color=Group, linetype=Group), size=0.5)+theme_void()+theme(legend.position = c(0.5,0.6), axis.title = element_blank(), axis.ticks = element_blank(), axis.text = element_blank())+coord_equal()+
  theme(legend.key.size = unit(5, units = "mm"))


####Also, in this code, I would like different plot symbols (e.g. ∆ for Beer, O for Whisky) for each group.

pca.fourier = bot.f %>% PCA %>% plot_PCA(~type)
layer_ellipses( conf = 0.9, lwd = 1, alpha = 0)%>%
  layer_axes(lwd = 1)%>%
  layer_axesvar(cex=1.5)%>%
  layer_ellipsesaxes (conf = 0.5,lwd=1.5)%>%
  layer_grid( col = "#999999", lty = 3, grid = 3)%>%
  layer_stars(alpha = 0.8)%>%
  layer_points( cex=1.3) %>% 
  #layer_eigen( nb_max =5, cex = 1 )%>% 
  layer_legend( cex = 1)%>%
  layer_title( title = "Study", cex =1)
#> Error in is.factor(x$f): argument "x" is missing, with no default

Created on 2022-07-12 by the reprex package (v2.0.1)

0

There are 0 best solutions below