How to calculate energy output using non-tracking CECMods

258 Views Asked by At

I'm trying to calculate energy output using the pvlib library on CECMod photovoltaic modules. The only implementation I've found (Thanks to Mark and Cliff) assumes that the modules are mounted on a single-axis tracker that follows the sun throughout the day. This is an issue for me since my modules will be fixed and won't track the sun.

Is there a way to calculate the energy output of CECMod modules without assuming that they'll track the sun?

For reference, I've included the implementation using the single-axis tracker below.

import pvlib
import pandas as pd

YEAR = 1990
STARTDATE = '%d-01-01T00:00:00' % YEAR
ENDDATE = '%d-12-31T23:59:59' % YEAR
TIMES = pd.date_range(start=STARTDATE, end=ENDDATE, freq='H')
INVERTERS = pvlib.pvsystem.retrieve_sam('CECInverter')
INVERTER_10K = INVERTERS['SMA_America__SB10000TL_US__240V_']
CECMODS = pvlib.pvsystem.retrieve_sam('CECMod')
CECMOD_POLY = CECMODS['Canadian_Solar_Inc__CS6X_300P']
CECMOD_MONO = CECMODS['Canadian_Solar_Inc__CS6X_300M']
LATITUDE, LONGITUDE = 40.5137, -108.5449
NREL_API_KEY = os.getenv('NREL_API_KEY', 'DEMO_KEY')
EMAIL = os.getenv('EMAIL', '[email protected]')
 
header, data = pvlib.iotools.get_psm3(LATITUDE, LONGITUDE, NREL_API_KEY, EMAIL)
# get solar position
data.index = TIMES
sp = pvlib.solarposition.get_solarposition(
        TIMES, LATITUDE, LONGITUDE)
solar_zenith = sp.apparent_zenith.values
solar_azimuth = sp.azimuth.values
dni = data.DNI.values
ghi = data.GHI.values
dhi = data.DHI.values
surface_albedo = data['Surface Albedo'].values
temp_air = data.Temperature.values
dni_extra = pvlib.irradiance.get_extra_radiation(TIMES).values

## Here is where the single-axis tracker is introduced

tracker = pvlib.tracking.singleaxis(solar_zenith, solar_azimuth)
surface_tilt = tracker['surface_tilt']
surface_azimuth = tracker['surface_azimuth']
poa_sky_diffuse = pvlib.irradiance.get_sky_diffuse(
        surface_tilt, surface_azimuth, solar_zenith, solar_azimuth,
        dni, ghi, dhi, dni_extra=dni_extra, model='haydavies')
aoi = tracker['aoi']
poa_ground_diffuse = pvlib.irradiance.get_ground_diffuse(
        surface_tilt, ghi, albedo=surface_albedo)
poa = pvlib.irradiance.poa_components(
        aoi, dni, poa_sky_diffuse, poa_ground_diffuse)
poa_direct = poa['poa_direct']
poa_diffuse = poa['poa_diffuse']
poa_global = poa['poa_global']
iam = pvlib.iam.ashrae(aoi)
effective_irradiance = poa_direct*iam + poa_diffuse
temp_cell = pvlib.temperature.pvsyst_cell(poa_global, temp_air)

# this is the magic
cecparams = pvlib.pvsystem.calcparams_cec(
        effective_irradiance, temp_cell,
        CECMOD_MONO.alpha_sc, CECMOD_MONO.a_ref,
        CECMOD_MONO.I_L_ref, CECMOD_MONO.I_o_ref,
        CECMOD_MONO.R_sh_ref, CECMOD_MONO.R_s, CECMOD_MONO.Adjust)
mpp = pvlib.pvsystem.max_power_point(*cecparams, method='newton')
mpp = pd.DataFrame(mpp, index=TIMES)
Edaily = mpp.p_mp.resample('D').sum() ```

Thanks for any help you can offer!
1

There are 1 best solutions below

0
On

It appears to me that if you create a basic system using the PVSystem class constructor, as opposed to SingleAxisTracker, you can implement basically the same behavior without the tracking feature.

Here is my code that illustrates the implementation of two similar systems with these two constructors, loosely based on the PV production example.

import datetime
import pytz

import pandas as pd
import matplotlib.pyplot as plt

import pvlib.forecast as pvlib_foreacst
import pvlib.pvsystem as pvlib_pvsystem
import pvlib.temperature as pvlib_temperature
import pvlib.tracking as pvlib_tracking
import pvlib.modelchain as pvlib_modelchain

def pv_power_forecast_example():

    """ an example from https://pvlib-python.readthedocs.io/en/stable/forecasts.html?highlight=power#pv-power-forecast """

    sandia_modules = pvlib_pvsystem.retrieve_sam(name="sandiamod", path=None)  # retrieve a table of pv panel data from database name in ["CECMod", "SandiaMod"]
    cec_inverters = pvlib_pvsystem.retrieve_sam(name="cecinverter", path=None)  # retrieve a table of inverter data from database name in ["CECInverter", "SandiaInverter", "ADRInverter"]
    module_parameters = sandia_modules["Canadian_Solar_CS5P_220M___2009_"]  # select single PV module parameters
    inverter_parameters = cec_inverters["SMA_America__SC630CP_US__with_ABB_EcoDry_Ultra_transformer_"]  # select single inverter module paramters
    temperature_modeling_methodology = pvlib_temperature.TEMPERATURE_MODEL_PARAMETERS["sapm"]  # select corresponding cell temperature modelling methodlogy
    temperature_model_parameters = temperature_modeling_methodology["open_rack_glass_glass"]  # select type from  ['open_rack_glass_glass', 'close_mount_glass_glass', 'open_rack_glass_polymer', 'insulated_back_glass_polymer']

    # create a PV system from previous selection

    fig = plt.figure()

    for iterator in [0, 1]:

        if iterator == 0:
            # tracking example
            example_label = "tracking"
            system = pvlib_tracking.SingleAxisTracker(
                axis_tilt=0,  # tilt of rotational axis (axis_azimuth) with respect to horizontal
                axis_azimuth=0,   # east of north
                max_angle=90,
                module_parameters=module_parameters,
                inverter_parameters=inverter_parameters,
                temperature_model_parameters=temperature_model_parameters,
                modules_per_string=15,  # num of modules in series
                strings_per_inverter=300,  # num of modules in parallel
                albedo=0.3,
                surface_type="concrete",
                )

        if iterator == 1:
            # fixed example
            example_label = "fixed?"
            system = pvlib_pvsystem.PVSystem(
                surface_tilt=0,  # surface facing up = 0, surface facing horizon = 90
                surface_azimuth=180,  # N=0, E=90, S=180, W=270
                albedo=0.3,
                surface_type="concrete",
                module=None,  # model name of selected module
                module_type=None,  # [=None, "glass_polymer", "glass_glass"]
                module_parameters=module_parameters,
                temperature_model_parameters=temperature_model_parameters,
                modules_per_string=15,  # num of modules in series
                strings_per_inverter=300,  # num of modules in parallel
                inverter=None,  # model name of selected inverter
                inverter_parameters=inverter_parameters,
                racking_model=None,  # [=None, "open_rack", "close_mount", "insulated_back"]
                losses_parameters=None,
                name=None
                )

        # define test site location and simulation time span
        (latitude, longitude, zone) = (44.787197, 20.457273, "Europe/Belgrade")
        start = pytz.timezone(zone=zone).localize(dt=datetime.datetime(2021, 1, 1, 0, 0)).astimezone(tz=pytz.timezone(zone))
        end = start + pd.Timedelta(days=21)

        model = pvlib_foreacst.GFS(resolution="half", set_type="best")  # instantiate weather data/forecast model
        weather = model.get_processed_data(latitude=latitude, longitude=longitude, start=start, end=end)  # obtain and process weather data/forecast

        model_chain = pvlib_modelchain.ModelChain(system=system, location=model.location)  # create a helper-model i.e. model chain to automate simulation
        model_chain.run_model(weather=weather)  # run the simulation
    
        plt.plot(model_chain.ac.fillna(0)/1000, label=example_label)
        plt.legend()
        plt.ylabel("AC Power [kW]")
        plt.grid(which="both")
        plt.tight_layout()

        print(example_label + " " + str(model_chain.ac.fillna(0)))
        print("")

    plt.show()
    plt.ion()

    pass

if __name__ == "__main__":
    pv_power_forecast_example()
    pass
else:
    pass

Here is how the results turned out...

However, I have been experimenting with pvlib only for a short time, so do take my response with a grain of salt.