I'm trying to calculate energy output using the pvlib library on CECMod photovoltaic modules. The only implementation I've found (Thanks to Mark and Cliff) assumes that the modules are mounted on a single-axis tracker that follows the sun throughout the day. This is an issue for me since my modules will be fixed and won't track the sun.
Is there a way to calculate the energy output of CECMod modules without assuming that they'll track the sun?
For reference, I've included the implementation using the single-axis tracker below.
import pvlib
import pandas as pd
YEAR = 1990
STARTDATE = '%d-01-01T00:00:00' % YEAR
ENDDATE = '%d-12-31T23:59:59' % YEAR
TIMES = pd.date_range(start=STARTDATE, end=ENDDATE, freq='H')
INVERTERS = pvlib.pvsystem.retrieve_sam('CECInverter')
INVERTER_10K = INVERTERS['SMA_America__SB10000TL_US__240V_']
CECMODS = pvlib.pvsystem.retrieve_sam('CECMod')
CECMOD_POLY = CECMODS['Canadian_Solar_Inc__CS6X_300P']
CECMOD_MONO = CECMODS['Canadian_Solar_Inc__CS6X_300M']
LATITUDE, LONGITUDE = 40.5137, -108.5449
NREL_API_KEY = os.getenv('NREL_API_KEY', 'DEMO_KEY')
EMAIL = os.getenv('EMAIL', '[email protected]')
header, data = pvlib.iotools.get_psm3(LATITUDE, LONGITUDE, NREL_API_KEY, EMAIL)
# get solar position
data.index = TIMES
sp = pvlib.solarposition.get_solarposition(
TIMES, LATITUDE, LONGITUDE)
solar_zenith = sp.apparent_zenith.values
solar_azimuth = sp.azimuth.values
dni = data.DNI.values
ghi = data.GHI.values
dhi = data.DHI.values
surface_albedo = data['Surface Albedo'].values
temp_air = data.Temperature.values
dni_extra = pvlib.irradiance.get_extra_radiation(TIMES).values
## Here is where the single-axis tracker is introduced
tracker = pvlib.tracking.singleaxis(solar_zenith, solar_azimuth)
surface_tilt = tracker['surface_tilt']
surface_azimuth = tracker['surface_azimuth']
poa_sky_diffuse = pvlib.irradiance.get_sky_diffuse(
surface_tilt, surface_azimuth, solar_zenith, solar_azimuth,
dni, ghi, dhi, dni_extra=dni_extra, model='haydavies')
aoi = tracker['aoi']
poa_ground_diffuse = pvlib.irradiance.get_ground_diffuse(
surface_tilt, ghi, albedo=surface_albedo)
poa = pvlib.irradiance.poa_components(
aoi, dni, poa_sky_diffuse, poa_ground_diffuse)
poa_direct = poa['poa_direct']
poa_diffuse = poa['poa_diffuse']
poa_global = poa['poa_global']
iam = pvlib.iam.ashrae(aoi)
effective_irradiance = poa_direct*iam + poa_diffuse
temp_cell = pvlib.temperature.pvsyst_cell(poa_global, temp_air)
# this is the magic
cecparams = pvlib.pvsystem.calcparams_cec(
effective_irradiance, temp_cell,
CECMOD_MONO.alpha_sc, CECMOD_MONO.a_ref,
CECMOD_MONO.I_L_ref, CECMOD_MONO.I_o_ref,
CECMOD_MONO.R_sh_ref, CECMOD_MONO.R_s, CECMOD_MONO.Adjust)
mpp = pvlib.pvsystem.max_power_point(*cecparams, method='newton')
mpp = pd.DataFrame(mpp, index=TIMES)
Edaily = mpp.p_mp.resample('D').sum() ```
Thanks for any help you can offer!
It appears to me that if you create a basic system using the PVSystem class constructor, as opposed to SingleAxisTracker, you can implement basically the same behavior without the tracking feature.
Here is my code that illustrates the implementation of two similar systems with these two constructors, loosely based on the PV production example.
Here is how the results turned out...
However, I have been experimenting with pvlib only for a short time, so do take my response with a grain of salt.