I need to use "modin" dataframes, which dont not work with multindexes (at one point i do df.reindex(idx), where idx is a multilevel index), so: how can I convert a multi index to a single index? (merging both levels together)
minimal sample:
import pandas as pd
idx = pd.DatetimeIndex(['2019-07-17 22:43:00',
'2019-07-17 22:44:00',
'2019-07-17 22:45:00',
'2019-07-17 22:46:00',
'2019-07-17 22:47:00',
'2019-07-17 22:48:00',
'2019-07-17 22:49:00',
'2019-07-17 22:50:00',
'2019-07-17 22:51:00',
'2019-07-17 22:52:00',
'2019-07-23 22:33:00',
'2019-07-23 22:34:00',
'2019-07-23 22:35:00',
'2019-07-23 22:36:00',
'2019-07-23 22:37:00',
'2019-07-23 22:38:00',
'2019-07-23 22:39:00',
'2019-07-23 22:40:00',
'2019-07-23 22:41:00',
'2019-07-23 22:42:00'] )
idx = pd.MultiIndex.from_tuples(zip( idx.date, idx.time))
dates_new = idx.get_level_values(0).unique()
times_new = idx.get_level_values(1).unique()
idx = pd.MultiIndex.from_product([dates_new,times_new])
idx = pd.DatetimeIndex(idx)
print(idx)
the following works, but is there any way to speed it up (on large datasets) ?
[datetime.datetime.combine(date,time) for date,time in idx.values]
Your problem is starting from a
DateTimeIndex
, you want to find all combination ofDate
andTime
and convert that to a newDateTimeIndex
.I would not use
.time
access since that gives adatetime
object, which doesn't play along nicely with Pandas. Instead, let's try:Output: