This shows the problem nicely:
import numpy as np
a_type = np.dtype([("x", int), ("y", float)])
a_list = []
for i in range(0, 8, 2):
entry = np.zeros((1,), dtype=a_type)
entry["x"][0] = i
entry["y"][0] = i + 1.0
a_list.append(entry)
a_array = np.array(a_list, dtype=a_type)
a_array_flat = a_array.reshape(-1)
print(a_array_flat["x"])
print(np.sum(a_array_flat["x"]))
and this produces the trackback and output:
[0 2 4 6]
Traceback (most recent call last):
File "/home/andreas/src/masiri/booking_algorythm/demo_structured_aarray_flatten.py", line 14, in <module>
print(np.sum(a_array_flat["x"]))
File "<__array_function__ internals>", line 180, in sum
File "/home/andreas/src/masiri/venv/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 2298, in sum
return _wrapreduction(a, np.add, 'sum', axis, dtype, out, keepdims=keepdims,
File "/home/andreas/src/masiri/venv/lib/python3.10/site-packages/numpy/core/fromnumeric.py", line 86, in _wrapreduction
return ufunc.reduce(obj, axis, dtype, out, **passkwargs)
numpy.core._exceptions._UFuncNoLoopError: ufunc 'add' did not contain a loop with signature matching types (dtype({'names': ['x'], 'formats': ['<i8'], 'offsets': [0], 'itemsize': 16}), dtype({'names': ['x'], 'formats': ['<i8'], 'offsets': [0], 'itemsize': 16})) -> None
I chose this data structure because I must do many column-wise operations fast and have more esoteric types like timedelta64
and datetime64
, too. I am sure basic Numpy operations work, and I overlook something obvious. Please help me.
In an
ipython
session, your code runs fine:The error message almost looks like you are indexing with field list:
What
numpy
version are you using? There was a period where numpy versions flipped-flopped on how they handledviews
of the array.Doing the sum on the unflattened array:
Another way of constructing this array:
or:
edit
I get your error message with the python
sum
(as opposed tonp.sum
, which I showed above).