For example, this is the result of certain multilevel analysis
MLM1<-lmer(y ~ 1 + con + ev1 + ev2 + (1 | pid),data=dat_ind)
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: y ~ 1 + con + ev1 + ev2 + (1 | pid)
Data: dat_ind
REML criterion at convergence: 837
Scaled residuals:
Min 1Q Median 3Q Max
-2.57771 -0.52765 0.00076 0.54715 2.27597
Random effects:
Groups Name Variance Std.Dev.
pid (Intercept) 1.4119 1.1882
Residual 0.9405 0.9698
Number of obs: 240, groups: pid, 120
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 0.1727 0.1385 116.7062 1.247 0.21494
con 0.3462 0.1044 227.3108 3.317 0.00106 **
ev1 -0.3439 0.2083 116.8432 -1.651 0.10143
ev2 0.2525 0.1688 117.0168 1.495 0.13753
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) con ev1
con 0.031
ev1 0.171 -0.049
ev2 -0.423 0.065 -0.407
for example, I can extract fixed effect such as following. summary(MLM1)[['coefficients']]['ev1','Pr(>|t|)']
How can I extract random effect coefficients? for example, I want to extract 1.4119, 1.1882, 0.9405, 0.9698.
Random effects:
Groups Name Variance Std.Dev.
pid (Intercept) 1.4119 1.1882
Residual 0.9405 0.9698
VarCorr(MLM1)$pid
is the basic object.broom.mixed::tidy(MLM1, effects = "ran_pars")
may give you a more convenient format.Or: