How to feed Images of different size being into the CNN

56 Views Asked by At

The problem being solved is a binary classification using CNN. Here I have images of different size. I am scaled down the images to 20% and normalizing them to the range (0,1) and obviously they still have different sizes. I am using x_train = tf.ragged.constant(normalized_train) to pass them into the CNN but I get an error as mentioned below -

ValueError: The channel dimension of the inputs should be defined. Found None.

Can anyone help?

Also, please suggest if I can use padding around the images to bring everything into same size without distorting the images.

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, Dropout, MaxPooling2D, Flatten, Dense

model = Sequential()

model.add(Conv2D(filters=32, kernel_size=3, activation="relu"))

model.add(Conv2D(filters=64, kernel_size=3, activation="relu"))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(rate=0.2))

model.add(Flatten())

model.add(Dense(128, activation="relu"))

model.add(Dense(1, activation="sigmoid"))

**X_train = tf.ragged.constant(normalized_train)** # allows to pass different size objects
y_train = tf.convert_to_tensor(y_train) # converting list type to tensor
**X_test = tf.ragged.constant(normalized_test)**
y_test = tf.convert_to_tensor(y_test) # converting list type to tensor

model.compile(loss="binary_crossentropy", metrics=\["accuracy"\], optimizer="adam")

model.fit(X_train, y_train, validation_data=(X_test,y_test), epochs = 3)

Detailed error is:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-35-aa60c2e9ae0d> in <module>
      1 model.compile(loss="binary_crossentropy", metrics=["accuracy"], optimizer="adam")
      2 # model.fit(normalized_train, y_train, validation_data=(normalized_test,y_test), epochs = 3)
----> 3 model.fit(X_train, y_train, validation_data=(X_test,y_test), epochs = 3)

/opt/anaconda3/lib/python3.7/site-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
   1182                 _r=1):
   1183               callbacks.on_train_batch_begin(step)
-> 1184               tmp_logs = self.train_function(iterator)
   1185               if data_handler.should_sync:
   1186                 context.async_wait()

/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
    883 
    884       with OptionalXlaContext(self._jit_compile):
--> 885         result = self._call(*args, **kwds)
    886 
    887       new_tracing_count = self.experimental_get_tracing_count()

/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
    931       # This is the first call of __call__, so we have to initialize.
    932       initializers = []
--> 933       self._initialize(args, kwds, add_initializers_to=initializers)
    934     finally:
    935       # At this point we know that the initialization is complete (or less

/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
    758     self._concrete_stateful_fn = (
    759         self._stateful_fn._get_concrete_function_internal_garbage_collected(  # pylint: disable=protected-access
--> 760             *args, **kwds))
    761 
    762     def invalid_creator_scope(*unused_args, **unused_kwds):

/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
   3064       args, kwargs = None, None
   3065     with self._lock:
-> 3066       graph_function, _ = self._maybe_define_function(args, kwargs)
   3067     return graph_function
   3068 

/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
   3461 
   3462           self._function_cache.missed.add(call_context_key)
-> 3463           graph_function = self._create_graph_function(args, kwargs)
   3464           self._function_cache.primary[cache_key] = graph_function
   3465 

/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
   3306             arg_names=arg_names,
   3307             override_flat_arg_shapes=override_flat_arg_shapes,
-> 3308             capture_by_value=self._capture_by_value),
   3309         self._function_attributes,
   3310         function_spec=self.function_spec,

/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes, acd_record_initial_resource_uses)
   1005         _, original_func = tf_decorator.unwrap(python_func)
   1006 
-> 1007       func_outputs = python_func(*func_args, **func_kwargs)
   1008 
   1009       # invariant: `func_outputs` contains only Tensors, CompositeTensors,

/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
    666         # the function a weak reference to itself to avoid a reference cycle.
    667         with OptionalXlaContext(compile_with_xla):
--> 668           out = weak_wrapped_fn().__wrapped__(*args, **kwds)
    669         return out
    670 

/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
    992           except Exception as e:  # pylint:disable=broad-except
    993             if hasattr(e, "ag_error_metadata"):
--> 994               raise e.ag_error_metadata.to_exception(e)
    995             else:
    996               raise

ValueError: in user code:

    /opt/anaconda3/lib/python3.7/site-packages/keras/engine/training.py:853 train_function  *
        return step_function(self, iterator)
    /opt/anaconda3/lib/python3.7/site-packages/keras/engine/training.py:842 step_function  **
        outputs = model.distribute_strategy.run(run_step, args=(data,))
    /opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:1286 run
        return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
    /opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:2849 call_for_each_replica
        return self._call_for_each_replica(fn, args, kwargs)
    /opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:3632 _call_for_each_replica
        return fn(*args, **kwargs)
    /opt/anaconda3/lib/python3.7/site-packages/keras/engine/training.py:835 run_step  **
        outputs = model.train_step(data)
    /opt/anaconda3/lib/python3.7/site-packages/keras/engine/training.py:787 train_step
        y_pred = self(x, training=True)
    /opt/anaconda3/lib/python3.7/site-packages/keras/engine/base_layer.py:1037 __call__
        outputs = call_fn(inputs, *args, **kwargs)
    /opt/anaconda3/lib/python3.7/site-packages/keras/engine/sequential.py:383 call
        outputs = layer(inputs, **kwargs)
    /opt/anaconda3/lib/python3.7/site-packages/keras/engine/base_layer.py:1030 __call__
        self._maybe_build(inputs)
    /opt/anaconda3/lib/python3.7/site-packages/keras/engine/base_layer.py:2659 _maybe_build
        self.build(input_shapes)  # pylint:disable=not-callable
    /opt/anaconda3/lib/python3.7/site-packages/keras/layers/convolutional.py:187 build
        input_channel = self._get_input_channel(input_shape)
    /opt/anaconda3/lib/python3.7/site-packages/keras/layers/convolutional.py:366 _get_input_channel
        raise ValueError('The channel dimension of the inputs '

    ValueError: The channel dimension of the inputs should be defined. Found `None`.
0

There are 0 best solutions below