How to find the control point of a quadratic curve using a parabola?

1.8k Views Asked by At

I can't figure out how to draw a parabola which is having a equation as y^2 = 4ax

So I have both end points i.e. P0, P2, however I can't figure out how to find control point to put in quadraticCurveTo() function.

2

There are 2 best solutions below

0
On BEST ANSWER

To match a quadratic Bezier to this parabola formula and assuming origin is 0, you can use place the control point at -y0 or -y1 from one of the end points.

Example

First, lets rearrange the formula:

y2 = 4ax

to:

x = y2 / 4a

so we can plot from bottom down.

In this case we can simply boil down everything and use the inverse of y and mid x as control point.

The general principle though, is to find the tangents of the endpoints. Then where the lines from those intersect the control-point should be placed. If you want the mathematical steps on how to find the intersection I would recommend taking a look at Erik Man's answer here (which happened to be posted today but breaks down the math in much more details).

So, if we plot it within the window of a canvas (black is parabola, red is quadratic curve):

var ctx = document.querySelector("canvas").getContext("2d"),
    w = ctx.canvas.width, h = ctx.canvas.height;
ctx.strokeStyle = "red";
ctx.lineWidth = 2;
ctx.translate(0, 6);

// formula
function f(y, a) {return y * y / (a * 4)};

var a = 80;

plotWindow();

function plotWindow() {
  
  ctx.clearRect(0, -6, w, h);
  ctx.fillStyle = "#000";
  
  // plot parabola using formula
  for(var i = 0; i < w; i++) {
    var y = f(i - w * 0.5, a);
    ctx.fillRect(i - 2, y - 2, 4, 4);
  }

  // plot parabola using quadratic curve:
  var x0 = 0;
  var y0 = f(-w * 0.5, a);
  var x1 = w;
  var y1 = f( w * 0.5, a);
  var cx = x1 * 0.5;  // control point is center for x
  var cy = -y0;       // control point is -y0 for y assuming top of parabola = 0

  ctx.beginPath();
  ctx.moveTo(x0, y0);
  ctx.quadraticCurveTo(cx, cy, x1, y1);
  ctx.stroke();
  
  // plot a
  ctx.fillStyle = "blue";
  ctx.fillRect(cx - 3, a - 3, 6, 6);
  ctx.fillText("a=" + a, cx + 6, a + 5)
}

// slider
document.querySelector("input").onchange = function() {
  a = +this.value;
  plotWindow();
};
canvas {border:1px solid #777}
<script src="https://cdn.rawgit.com/epistemex/slider-feedback/master/sliderfeedback.min.js"></script>
<label>a: <input type="range" min=10 max=172 value=80></label><br>
<canvas width=600 height=190></canvas>

0
On

Function in Lua to get the control point of quadratic Bezier curve by given parabola parameters a, b, c and starting and end point (given by y1, y2 OR x1, x2):

function drawBezierParabola (a, b, c, y1, y2)
    -- crop points:
    local x1 = (-b + math.sqrt(b^2 - 4*a*(c-y1))) / (2*a)
    local x2 = (-b - math.sqrt(b^2 - 4*a*(c-y2))) / (2*a)

    --[[ or by given x1 and x2:
    local y1 = a * x1^2 + b * x1 + c
    local y2 = a * x2^2 + b * x2 + c
    ]]

    -- derivatives:
    local k1 = 2 * a * x1 + b
    local k2 = 2 * a * x2 + b

    -- bezier control point:
    local xi = -b/(2*a) - (y2 - y1) / (k1 - k2)
    local yi = k1 * (xi - x1) + y1

    local bezier = love.math.newBezierCurve (x1, y1, xi, yi, x2, y2)
    love.graphics.line (bezier:render())
end