Assuming a low end microprocessor with no floating point arithmetic, I need to generate an IEE754 single precision floating point format number to push out to a file.
I need to write a function that takes three integers being the sign, whole and the fraction and returns a byte array with 4 bytes being the IEEE 754 single precision representation.
Something like:
// Convert 75.65 to 4 byte IEEE 754 single precision representation
char* float = convert(0, 75, 65);
Does anybody have any pointers or example C code please? I'm particularly struggling to understand how to convert the mantissa.
You will need to generate the sign (1 bit), the exponent (8 bits, a biased power of 2), and the fraction/mantissa (23 bits).
Bear in mind that the fraction has an implicit leading '1' bit, which means that the most significant leading '1' bit (2^22) is not stored in the IEEE format. For example, given a fraction of 0x755555 (24 bits), the actual bits stored would be 0x355555 (23 bits).
Also bear in mind that the fraction is shifted so that the binary point is immediately to the right of the implicit leading '1' bit. So an IEEE 23-bit fraction of 11 0101 0101... represents the 24-bit binary fraction 1.11 0101 0101... This means that the exponent has to be adjusted accordingly.