I want to get the last two mapped elements of a deterministic ternary ordered pair in the form of binary ordered pairs, here's an example:
set A = { 1 ↦ 2 ↦ 3,1 ↦ 5 ↦ 6}
,I want to get set B = {2 ↦ 3, 5 ↦ 6}
,what should I do?
BTW:Is that possible?
I tried to get the domain and range of set A
and use Cartesian product to get what I want,but I failed,the result set was disordered
A={ 1↦2↦3, 1↦5↦6}
is the same asA={ (1↦2)↦3, (1↦5)↦6 }
, so you have a set of pairs here.What you want is a combination of the left and right side of each entry, so domain and range won't work here. But you can achieve it with a set comprehension:
(Read: For all triples a↦b↦c store b↦c in B)
But what do you mean by "disordered"? Since A and B are sets, there is no defined order. It does not make a difference whether it is
{2↦3, 5↦6}
or{5↦6, 2↦3}
.