I'm wondering how to implement a Breadth-first search in Scala, using functional programing.
Here is my first, impure, code :
def bfs[S](init: S, f: S => Seq[S], finalS: S => Boolean): Option[S] = {
val queue = collection.mutable.Queue[S]()
queue += init
var found: Option[S] = None
while (!queue.isEmpty && found.isEmpty) {
val next = queue.dequeue()
if (finalS(next)) {
found = Some(next)
} else {
f(next).foreach { s => queue += s }
}
}
found
}
Although I use only local mutability (a var
and a mutable Queue
), it's not purely functional.
I come up with another version :
case class State[S](q: Queue[S], cur: S)
def update[S](f: S => Seq[S])(s: State[S]) : State[S] = {
val (i, q2) = s.q.dequeue
val q3 = f(i).foldLeft(q2) { case (acc, i) => acc.enqueue(i)}
State(q3, i)
}
def bfs2[S](init: S, f: S => Seq[S], finalS: S => Boolean): Option[S] = {
val s = loop(State[S](Queue[S]().enqueue(init), init), update(f) _, (s: State[S]) => s.q.isEmpty || finalS(s.cur))
Some(s.cur)
}
def loop[A](a: A, f: A => A, cond: A => Boolean) : A =
if (cond(a)) a else loop(f(a), f, cond)
Is there a better way for both solutions ? Is it possible to use cats/scalaz to remove some boilerplate ?
One nice thing about functional programming is you can take advantage of laziness to separate the traversal of your data structure from the searching part. This makes for very reusable, single responsibility code:
Now you can do a BFS by
breadth_first_traverse(root, f) find (_ == 16)
or use any other function in the Stream class to do useful ad hoc "queries" on a lazy breadth-first flattenedStream
of your tree.