I am working on implementing hybrid branch predictors listed below
- Gshare + TAGE
- TAGE + Alpha
- Perceptron + TAGE
- Gshare + Alpha
- Perceptron + Gshare
- Perceptron + Alpha
- Perceptron + TAGE + Alpha
I understand that I have to create a class definition of the hybrid predictor in the config-mixins.scala file and create a class instance in the BOOMConfigs.scala file. When I try doing that, the results I get are the same as if I run the benchmark program without any branch predictor.
The idea is to replace the tagless base predictor (PC indexed 2-bit counter bimodal table) of TAGE with Gshare. I created a class definition of the hybrid predictor in the config-mixins.scala file and create a class instance in the BOOMConfigs.scala file. When I try doing that, the results I get are the same as if I run the benchmark programs (multiplication.riscv, qsort.riscv, and dhrystone.riscv) without any branch predictor. These are screenshots of what I did for the Gshare + TAGE hybrid combination.
Class Definition of Hybrid combination of Gshare and Tage in config-mixins.scala file
class WithHybridGshareTAGE extends Config((site, here, up) => {
case TilesLocated(InSubsystem) => up(TilesLocated(InSubsystem), site) map {
case tp: BoomTileAttachParams => tp.copy(tileParams = tp.tileParams.copy(core = tp.tileParams.core.copy(
bpdMaxMetaLength = 120,
globalHistoryLength = 64,
localHistoryLength = 1,
localHistoryNSets = 0,
branchPredictor = ((resp_in: BranchPredictionBankResponse, p: Parameters) => {
val loop = Module(new LoopBranchPredictorBank()(p))
val tage = Module(new TageBranchPredictorBank()(p))
val btb = Module(new BTBBranchPredictorBank()(p))
val bim = Module(new BIMBranchPredictorBank()(p))
val ubtb = Module(new FAMicroBTBBranchPredictorBank()(p))
val gshare = Module(new TageBranchPredictorBank(
BoomTageParams(tableInfo = Seq((256, 16, 7)))
)(p))
val preds = Seq(loop, tage, btb, ubtb, bim, gshare)
preds.map(_.io := DontCare)
gshare.io.resp_in(0) := resp_in
ubtb.io.resp_in(0) := gshare.io.resp
bim.io.resp_in(0) := ubtb.io.resp
btb.io.resp_in(0) := bim.io.resp
tage.io.resp_in(0) := btb.io.resp
loop.io.resp_in(0) := tage.io.resp
(preds, loop.io.resp)
})
)))
case other => other
}
})
Class Instance of Hybrid combination of Gshare and Tage in BOOMConfigs.scala file
class ECE5504HybridGshareTAGESmallBoomConfig extends Config(
new boom.common.WithNBoomPerfCounters(11) ++
new boom.common.WithNSmallBooms(1) ++
new boom.common.WithHybridGshareTAGE ++
new chipyard.config.AbstractConfig)
The CPI I get for all three benchmark programs (multiplication.riscv, qsort.riscv, and dhrystone.riscv) with this hybrid combination is the same as the CPI for when I run the same benchmark programs with no branch predictor.