How to interpret response for bounding box , google cloud endpoint

791 Views Asked by At

I have trained and deployed End Point of a custom object detection model using new Vertex AI in google cloud. When I test the model on cloud I see perfect bounding boxes on a image. But when I send request to the end point using python, the bounding boxes gotten in response seems to be incorrect. Please note I am multiplying with width and height.

My code:-

import base64
from google.cloud import aiplatform
import cv2
from google.cloud.aiplatform.gapic.schema import predict
import os
os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="C:\\Users\\tarunmis\\Downloads\\first-cascade-315219-ccaaa402f837.json"
IMAGE_PATH = "C:\\Users\\tarunmis\\Desktop\\p2.jpg"

def predict_image_object_detection_sample(
    project: str="MY STR",
    endpoint_id: str="MY ID",
    filename: str=IMAGE_PATH,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.PredictionServiceClient(client_options=client_options)
    with open(filename, "rb") as f:
        file_content = f.read()

    # The format of each instance should conform to the deployed model's prediction input schema.
    encoded_content = base64.b64encode(file_content).decode("utf-8")
    instance = predict.instance.ImageObjectDetectionPredictionInstance(
        content=encoded_content,
    ).to_value()
    instances = [instance]
    # See gs://google-cloud-aiplatform/schema/predict/params/image_object_detection_1.0.0.yaml for the format of the parameters.
    parameters = predict.params.ImageObjectDetectionPredictionParams(
        confidence_threshold=0.5, max_predictions=10,
    ).to_value()
    endpoint = client.endpoint_path(
        project=project, location=location, endpoint=endpoint_id
    )
    response = client.predict(
        endpoint=endpoint, instances=instances, parameters=parameters
    )
    print("response")
    print(" deployed_model_id:", response.deployed_model_id)
    # See gs://google-cloud-aiplatform/schema/predict/prediction/image_object_detection.yaml for the format of the predictions.
    predictions = response.predictions
    preds = list()
    print(response)
    for prediction in predictions:
        preds.append(dict(prediction))
    return preds


# [END aiplatform_predict_image_object_detection_sample]

predictions = predict_image_object_detection_sample()
prediction = predictions[0]

image = cv2.imread(IMAGE_PATH,1)
h,w,c = image.shape
boxes = prediction['bboxes']
confs = prediction["confidences"]
for box,conf in zip(boxes,confs):
    x1 = int(w*box[0])
    y1 = int(h*box[1])
    x2 = int(w*box[2])
    y2 = int(h*box[3])
    if conf>0.1:
        cv2.circle(image,(x1,y1),5,(0,0,255),cv2.FILLED)
        cv2.circle(image, (x2, y2), 5, (255, 0, 0), cv2.FILLED)
        cv2.rectangle(image,(x1,y1),(x2,y2),(0,255,0))
cv2.imshow("img",image)
cv2.waitKey()

And the response is:-

predictions {
  struct_value {
    fields {
      key: "bboxes"
      value {
        list_value {
          values {
            list_value {
              values {
                number_value: 0.678395331
              }
              values {
                number_value: 0.779298723
              }
              values {
                number_value: 0.645786881
              }
              values {
                number_value: 0.683837295
              }
            }
          }
          values {
            list_value {
              values {
                number_value: 0.18701905
              }
              values {
                number_value: 0.287654519
              }
              values {
                number_value: 0.627796173
              }
              values {
                number_value: 0.669630647
              }
            }
          }
        }
      }
    }
    fields {
      key: "confidences"
      value {
        list_value {
          values {
            number_value: 0.813014865
          }
          values {
            number_value: 0.748636127
          }
        }
      }
    }
    fields {
      key: "displayNames"
      value {
        list_value {
          values {
            string_value: "plate"
          }
          values {
            string_value: "plate"
          }
        }
      }
    }
    fields {
      key: "ids"
      value {
        list_value {
          values {
            string_value: "66451184247898112"
          }
          values {
            string_value: "66451184247898112"
          }
        }
      }
    }
  }
}
deployed_model_id: "1371469231836626944"
1

There are 1 best solutions below

4
On

h and w should be the other way round and so should x2 and y1:

w,h,c = img.shape
    ...

x1 = int(w*boxes[0])
x2 = int(w*boxes[1])
y1 = int(h*boxes[2])
y2 = int(h*boxes[3])