I am trying to write a function to round values to the nearest valid odds in a list from here: https://api.developer.betfair.com/services/webapps/docs/display/1smk3cen4v3lu3yomq5qye0ni/Betfair+Price+Increments
My code is here:
def nclosest_valid_odds( x ):
"""
https://api.developer.betfair.com/services/webapps/docs/display/1smk3cen4v3lu3yomq5qye0ni/Betfair+Price+Increments
"""
r = np.empty_like( x )
r[ x<1.0 ] = np.nan
bidx = (1.0<=x) & (x<=2.0)
r[ bidx ] = 0.01 * np.round( x[ bidx ] / 0.01 )
bidx = (2.0<x) & (x<=3.0 )
r[ bidx ] = 0.02 * np.round( x[ bidx ] / 0.02 )
bidx = (3.0<x) & (x<=4.0)
r[ bidx ] = 0.05 * np.round( x[ bidx ] / 0.05 )
bidx = (4.0<x) & (x<=6.0)
r[ bidx ] = 0.1 * np.round( x[ bidx ] / 0.1 )
bidx = (6.0<x) & (x<=10.0)
r[ bidx ] = 0.2 * np.round( x[ bidx ] / 0.2 )
bidx = (10.0<x) & (x<=20.0)
r[ bidx ] = 0.5 * np.round( x[ bidx ] / 0.5 )
bidx = (20.0<x) & (x<=30.0)
r[ bidx ] = np.round( x[ bidx ] )
bidx = (30.0<x) & (x<=50.0)
r[ bidx ] = 2.0 * np.round( x[ bidx ] / 2.0 )
bidx = (50.0<x) & (x<=100.0)
r[ bidx ] = 5.0 * np.round( x[ bidx ] / 5.0 )
bidx = (100.0<x) & (x<=1000)
r[ bidx ] = 10.0 * np.round( x[ bidx ] / 10.0 )
return r
A floor version using numba is here:
def floor_closest_valid_odds( x ):
r = np.zeros_like( x )
for i in range( len( r ) ):
if x[i]<=1.0:
r[i] = np.nan
elif x[i]<=2.0:
r[i] = 0.01 * np.floor( x[i] / 0.01 )
elif x[i]<=3.0:
r[i] = 0.02 * np.floor( x[i] / 0.02 )
elif x[i]<=4.0:
r[i] = 0.05 * np.floor( x[i] / 0.05 )
elif x[i]<=6.0:
r[i] = 0.1 * np.floor( x[i] / 0.1 )
elif x[i]<=10.0:
r[i] = 0.5 * np.floor( x[i] / 0.5 )
elif x[i]<=20.0:
r[i] = 1.0 * np.floor( x[i] / 1.0 )
elif x[i]<=30.0:
r[i] = 2.0 * np.floor( x[i] / 2.0 )
elif x[i]<=50.0:
r[i] = 2.0 * np.floor( x[i] / 2.0 )
elif x[i]<=100.0:
r[i] = 5.0 * np.floor( x[i] / 5.0 )
elif x[i]<=1000.0:
r[i] = 2.0 * np.floor( x[i] / 2.0 )
else:
r[i] = 1000.0
return r
jfloor_closest_valid_odds = autojit( floor_closest_valid_odds )
And I time the code using this:
x = np.random.randn( 1000000 )
with Timer( 'nclosest_odds' ):
r = nclosest_valid_odds( x )
r =helpers.jfloor_closest_valid_odds( x )
with Timer( 'jfloor_closest_valid_odds' ):
r = helpers.jfloor_closest_valid_odds( x )
Timings on my machine:
nclosest odds : 0.06 seconds
jfloor_closest_odds : 0.01 seconds
How could I speed up the code using numpy and/or numba?
Solution:
I discovered that the multi-threading example from http://numba.pydata.org/numba-doc/dev/examples.html can be turned into a vectorizing function. Using this results in the best performance on my 2 core laptop.
Numba's Vectorize function is OK too, though not as good.
I have uploaded the vectorizer code to github: https://github.com/jsphon/MTVectorizer
A chart of timing comparisons is below. The x-axis represents the size of the input array. The y-axis represents time.
This chart is from a dual core laptop.
This chart is from a desktop with i7 920 CPU. It has 8 cores.
You can get a speed increase in numpy by creating a magnitude array and then doing the rounding all at the end with the magnitude array.