I have:
- Linearly interpolated the dFe_env data every 1 m and create a data frame (This works)
- Extracted the 'Depth' (based on sinking rate) in 30 minute intervals (This works)
- Created a 'Time' column where it increases every 30 minutes (This works)
How do I:
Merge two dataframes together (Bckgd_env2 and bulk_Fe2). In 'bulk_Fe2' the Depth increases by 1m and in 'Bckgd_env2' the depth increases by 0.8m. Can I get the closest 'Depth' match, extract the dFe_env at that depth and create a new data frame with Depth, Time and dFe_env all together?
library(dplyr) Depth <- c(0, 2, 20, 50, 100, 500, 800, 1000, 1200, 1500) dFe_env <- c(0.2, 0.2, 0.3, 0.4, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1) bulk_Fe <- data.frame(Depth, dFe_env) summary(bulk_Fe) is.data.frame(bulk_Fe) do_interp <- function(dat, Depth = seq(0,1500, by=1)) { out <- tibble(Depth = Depth) for (var in c("dFe_env")) { out[[var]] <- tryCatch(approx(dat$Depth, dat[[var]], Depth)$y, method="ngb", error = function(e) NA_real_) } out } bulk_Fe2 <- bulk_Fe %>% do(do_interp(.)) bulk_Fe2 summary(bulk_Fe2) D0 <- 0 #Starting depth T0 <- 0 #Starting time of the experiment r <- 40 #sinking rate per day r_30min <- r/48 #sinking speed every 30 minutes (There are 48 x 30 minute intervals in 24 hours) days <- round(1501/(r)) #days 1501 is maximum depth time <- days * 24 * 60 #minutes n_steps <- 1501/r_30min Bckgd_env2 <- data.frame(Depth =seq(from = D0, by= r_30min, length.out = n_steps + 1), Time = seq(from = T0, by= 30, length.out = n_steps + 1)) head(Bckgd_env2) round(Bckgd_env2, digits = 1) Bckgd_env3 <- merge(Bckgd_env2, bulk_Fe2) Bckgd_env3 plot(Bckgd_env2$dFe_env ~ Bckgd_env2$Depth, ylab="dFe (nmol/L)", xlab="Depth (m)", las=1)
You have already built the mechanism for interpolation which will be useful for the join. But you didn't build it at the right depth values. It is just a matter of reorganizing your code.
Start with buiding
Bckgd_env2
, and only afterwards computebulk_Fe2
andbulk_Fe3
: