How to pair geom_point and geom_line with position_dodge?

160 Views Asked by At

geom_point (points) and geom_line (lines) are not paired in position in ggplot2 when using position_dodge

now the figure

Here is my code:

ggplot(data = datae.19.26, aes(x=as.factor(assay.tem), y=change.fitness ))+
  geom_point(aes(group= as.factor(evolution.tem)), position = position_dodge(width = 0.3))+
  xlab(expression(paste("Assasy environment"))) + 
  ylab(expression(paste("Change in fitness"))) + 
  labs(shape=expression("Evolution\nenvironment", degree~"C"))+
  geom_line(aes(linetype=as.factor(evolution.tem),group= tag),position = position_dodge(width = 0.3))+
  theme_classic()
)

Here is my data data

tag = block + evolution.tem + group

my data (for test):

assay.tem <- c(19,19,19,19,19,19,19,19,26,26,26,26,26,26,26,26)
evolution.tem <- c(19,19,26,26,19,19,26,26,19,19,26,26,19,19,26,26)
tag <- c("A19a","A19b","A26a","A26b","B19a","B19b","B26a","B26b","A19a","A19b","A26a","A26b","B19a","B19b","B26a","B26b")
change.fitness <- c(0.148000525,0.422677262,0.360426885,0.336559874,0.611094594,0.515070536,0.173537012,0.325389861,0.441893408,0.689221781,0.573697751,0.564322921,0.709060167,0.911127005,0.613946604,0.572489802)

datae.test <- data.frame (assay.tem,evolution.tem,tag,change.fitness)

I guess the default norm for points' position_dodge is 'as.factor(evolution.tem)', while for lines' is 'tag', but how can i solve this problem?

(note that the group for line and point are not same! so different from using position_dodge with geom_line)

1

There are 1 best solutions below

1
On

Try this:

We do not need position_dodge:

Basically: this is the answer:

df %>% 
  ggplot(aes(x = factor(assay.tem), y=change.fitness, group=tag))+
  geom_point()+
  geom_line()

A basic approach that can be extended: As you do not provide all the the data I filtered the relevant pairs:

df %>% 
  filter(row_number() %in% c(1,2,13, 14)) %>% 
  ggplot(aes(x = factor(assay.tem), y=change.fitness))+
  geom_point()+
  geom_line(aes(group=tag))+
  xlab(expression(paste("Assasy environment"))) + 
  ylab(expression(paste("Change in fitness"))) + 
  labs(shape=expression("Evolution\nenvironment", degree~"C"))+
  theme_classic()

data:

df <- structure(list(species = c("E", "E", "E", "E", "E", "E", "E", 
"E", "E", "E", "E", "E", "E", "E"), assay.tem = c(19L, 19L, 19L, 
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 26L, 26L), block = c("A", 
"A", "A", "A", "B", "B", "B", "B", "C", "C", "C", "C", "A", "A"
), evolution.tem = c(19L, 19L, 26L, 26L, 19L, 19L, 26L, 26L, 
19L, 19L, 26L, 26L, 19L, 19L), group = c("a", "b", "a", "b", 
"a", "b", "a", "b", "a", "b", "a", "b", "a", "b"), tag = c("A19a", 
"A19b", "A26a", "A26b", "B19a", "B19b", "26a", "B26b", "C19a", 
"c19b", "C26a", "c26b", "A19a", "A19b"), change.fitness = c(0.1480005, 
0.4226773, 0.3604269, 0.3365599, 0.6110946, 0.5150705, 0.173537, 
0.3253899, 0.4142653, 0.3063598, 0.221773, 0.186416, 0.4418934, 
0.6892218)), class = "data.frame", row.names = c("1", "2", "3", 
"4", "7", "8", "9", "10", "13", "14", "15", "16", "19", "20"))

enter image description here