How to put variable which is not a state variable in a ODEs system optimisation model using symfit?

63 Views Asked by At

I'm trying to perform fitting for bioprocess model consisting of 5 ODEs system and 6 algebraic equations using symfit library. The main issue is that I have experimental data for variables F and kLa which are used in ODEs equations but are not the state variables, and can't figure out how to implement this variables into symfit.

EDIT:system of equationsenter image description here enter image description here

Below is my code:

import numpy as np
from symfit import parameters, variables, Fit, D, ODEModel
import matplotlib.pyplot as plt
import pandas as pd

columns=['t','OD','S','cond','DO','V','F','kLa']
Dane = pd.read_csv('exp_data.txt',sep='\t', names=columns)

#Experimental data
timepoints=np.array(Dane['t'])   # time points
X_data=np.array(Dane['OD'])  # X measurements
S_data=np.array(Dane['S'])   # S measurements
A_data=np.array(Dane['cond'])    # A measurements
DO_data=np.array(Dane['DO'])  # O measurements
V_data=np.array(Dane['V'])   # V measurements
F_data=np.array(Dane['F'])   # F measurements
kLa_data=np.array(Dane['kLa'])    # kLa measurements

#initial values 
t0=Dane['t'][0]
X0=Dane['OD'][0]
S0=Dane['S'][0]
A0=Dane['cond'][0]
DO0=Dane['DO'][0]
V0=Dane['V'][0]
F0=Dane['F'][0]
kLa0=Dane['kLa'][0]

Sf=500

# Define variables
t, X, S, A, DO, V, F, kLa = variables('t X S A DO V F kLa')

# Define parameters with bounds
Kap, Ksa, Ko, Ks, Kia, Kis, p_Amax, q_Amax, qm, q_Smax, Yoa, Yxa, Yem, Yos, Yxsof = parameters(
    'Kap Ksa Ko Ks Kia Kis p_Amax q_Amax qm q_Smax Yoa Yxa Yem Yos Yxsof',
    bounds={
        'Kap': (0, None),  # Lower bound of 0 for Kap, no upper bound
        'Ksa': (0, None),
        'Ko': (0, None),
        'Ks': (0, None),
        'Kia': (0, None),
        'Kis': (0, None),
        'p_Amax': (0, None),
        'q_Amax': (0, None),
        'qm': (0, None),
        'q_Smax': (0, None),
        'Yoa': (0, None),
        'Yxa': (0, None),
        'Yem': (0, None),
        'Yos': (0, None),
        'Yxsof': (0, None),
    }
)

# Define state variables and parameters for the algebraic equations
qs = (q_Smax * S / (S + Ks)) * Kia / (Kia + A)
qsof = (p_Amax * qs / (qs + Kap))
qsox = (qs - qsof) * DO / (DO + Ko)
qsa = (q_Amax * A / (A + Ksa)) * (Kis / (qs + Kis))
qo = (qsox - qm) * Yos + qsa * Yoa
u = (qsox - qm) * Yem + qsof * Yxsof + qsa * Yxa

# Define the system of differential equations
dx1 = u * X - F * X / V
dx2 = (F * (Sf - S) / V) - qs * X
dx3 = qsa * X - (F * A / V)
dx4 = kLa * (100 - DO) - qo * X * 700
dx5 = F

# Define the ODE model
model={
    D(X, t): dx1,
    D(S, t): dx2,
    D(A, t): dx3,
    D(DO, t): dx4,
    D(V, t): dx5,
}

ode_model = ODEModel(model,initial={t:t0, X:X0, S:S0, A:A0, DO:DO0, V:V0})

# Fit the model to the data
fit = Fit(ode_model, t=timepoints, X=X_data, S=S_data, A=A_data, DO=DO_data, V=V_data)
result = fit.execute()

# Display the result
print(result)

# Access the fitted parameters
fitted_params = result.params
print(fitted_params)

Running this code gives the following Traceback and Error:

Traceback (most recent call last):

  File "D:\Python praca\Optymalizacaj\dopasowanie parametrow hodowli.py", line 91, in <module>
    result = fit.execute()

  File "C:\ProgramData\Anaconda3\lib\site-packages\symfit\core\fit.py", line 573, in execute
    minimizer_ans = self.minimizer.execute(**minimize_options)

  File "C:\ProgramData\Anaconda3\lib\site-packages\symfit\core\minimizers.py", line 400, in execute
    return super(ScipyGradientMinimize, self).execute(jacobian=jacobian, **minimize_options)

  File "C:\ProgramData\Anaconda3\lib\site-packages\symfit\core\minimizers.py", line 339, in execute
    ans = minimize(

  File "C:\ProgramData\Anaconda3\lib\site-packages\scipy\optimize\_minimize.py", line 612, in minimize
    return _minimize_bfgs(fun, x0, args, jac, callback, **options)

  File "C:\ProgramData\Anaconda3\lib\site-packages\scipy\optimize\optimize.py", line 1101, in _minimize_bfgs
    sf = _prepare_scalar_function(fun, x0, jac, args=args, epsilon=eps,

  File "C:\ProgramData\Anaconda3\lib\site-packages\scipy\optimize\optimize.py", line 261, in _prepare_scalar_function
    sf = ScalarFunction(fun, x0, args, grad, hess,

  File "C:\ProgramData\Anaconda3\lib\site-packages\scipy\optimize\_differentiable_functions.py", line 76, in __init__
    self._update_fun()

  File "C:\ProgramData\Anaconda3\lib\site-packages\scipy\optimize\_differentiable_functions.py", line 166, in _update_fun
    self._update_fun_impl()

  File "C:\ProgramData\Anaconda3\lib\site-packages\scipy\optimize\_differentiable_functions.py", line 73, in update_fun
    self.f = fun_wrapped(self.x)

  File "C:\ProgramData\Anaconda3\lib\site-packages\scipy\optimize\_differentiable_functions.py", line 70, in fun_wrapped
    return fun(x, *args)

  File "C:\ProgramData\Anaconda3\lib\site-packages\symfit\core\objectives.py", line 308, in __call__
    evaluated_func = super(LeastSquares, self).__call__(

  File "C:\ProgramData\Anaconda3\lib\site-packages\symfit\core\objectives.py", line 93, in __call__
    result = self.model(**key2str(parameters))._asdict()

  File "C:\ProgramData\Anaconda3\lib\site-packages\symfit\core\models.py", line 1256, in __call__
    return ModelOutput(self.keys(), self.eval_components(*args, **kwargs))

  File "C:\ProgramData\Anaconda3\lib\site-packages\symfit\core\models.py", line 1194, in eval_components
    ans_bigger = solve_ivp(

  File "C:\ProgramData\Anaconda3\lib\site-packages\scipy\integrate\_ivp\ivp.py", line 576, in solve_ivp
    message = solver.step()

  File "C:\ProgramData\Anaconda3\lib\site-packages\scipy\integrate\_ivp\base.py", line 181, in step
    success, message = self._step_impl()

  File "C:\ProgramData\Anaconda3\lib\site-packages\scipy\integrate\_ivp\lsoda.py", line 148, in _step_impl
    solver._y, solver.t = integrator.run(

  File "C:\ProgramData\Anaconda3\lib\site-packages\scipy\integrate\_ode.py", line 1346, in run
    y1, t, istate = self.runner(*args)

  File "C:\ProgramData\Anaconda3\lib\site-packages\scipy\integrate\_ivp\base.py", line 138, in fun
    return self.fun_single(t, y)

  File "C:\ProgramData\Anaconda3\lib\site-packages\scipy\integrate\_ivp\base.py", line 20, in fun_wrapped
    return np.asarray(fun(t, y), dtype=dtype)

  File "C:\ProgramData\Anaconda3\lib\site-packages\numpy\core\_asarray.py", line 85, in asarray
    return array(a, dtype, copy=False, order=order)

  File "C:\ProgramData\Anaconda3\lib\site-packages\sympy\core\expr.py", line 327, in __float__
    raise TypeError("can't convert expression to float")

TypeError: can't convert expression to float

As I understand, probably variables F and kLa can't be converted to the numeric values, but I don't know how to overcome this. I have tried adding initial conditions for these variables in ode_model as also below code with no success: fit = Fit(ode_model, t=timepoints, X=X_data, S=S_data, A=A_data, DO=DO_data, V=V_data, F=F_data, kLa=kLa_data)

How to pass this variables to fitting in a proper way? Appreciate any suggestions and comments.

EDIT: test data, the same format as in my source file:

0   0.9    2    18.4    99      6250    18.9    121.956
1   1.3   1.2   18.59   64.7    6268.9  12.6    121.843
2   2.5   1.2   18.92   44.7    6281.5  26.6    122.069
3   4.4   1.0   19.53   45.2    6308.1  47.7    138.115
4   7.8   1.1   19.93   37.7    6355.8  88.2    150.356
5  12.8   1.1   20.73   36      6444.0  116.8   164.471
6     21  1.0   22.15   37.6    6560.8  188.6   176.819
6.5   26  0.9   23.26   42.5    6655.1  139.2   185.219
7     29  0.9   24.54   37.8    6724.7  73.2    187.883
8     35    0   22.83   57.8    6797.9  60.8    192.626
9     44    0   21.01   46.4    6858.7  74.0    192.626
10    52    0   18.76   44      6932.7  75.6    192.678
11    58    0   17.2    49.8    7008.3  67.2    192.739
12    65    0   15.67   66.9    7075.5  53.2    192.709
13    72    0   14.63   83      7128.7  39.2    192.709
14    75    0   14.09   89.8    7167.9  36.4    192.791
14.5  76    0   13.93   92.3    7186.1  25.2    192.804
15    76    0   13.84   92.9    7198.7  25.2    192.722
0

There are 0 best solutions below