How to render Vega-lite viz in Google Colab

336 Views Asked by At

What is the recommended way of rendering a Vega-lite spec inside of Google Colab?

This post describes how to do this with Vega but not Vega-lite.

I've also tried this as suggested on Slack

chart = alt.Chart.from_dict(vl_spec_dict)

However, in Colab, I get a validation error using this valid spec converted a Python dict. The Python dict is given below.

Any suggestions would be much appreciated.

{'$schema': 'https://vega.github.io/schema/vega-lite/v4.8.1.json',
 'background': 'white',
 'config': {'axis': {'labelFontSize': 15,
   'labelLimit': 1000,
   'titleFontSize': 15},
  'legend': {'labelFontSize': 15, 'symbolSize': 100, 'titleFontSize': 15},
  'numberFormat': '.0f',
  'scale': {'bandPaddingInner': 0.5, 'bandPaddingOuter': 0.5},
  'style': {'bar': {'size': 20},
   'guide-label': {'fontSize': 15},
   'guide-title': {'fontSize': 15, 'value': 'asdf'}},
  'title': {'fontSize': 20, 'offset': 20}},
 'data': {'name': 'data-78d3ef908a3fe582b9e56995f5dff5f9'},
 'datasets': {'data-78d3ef908a3fe582b9e56995f5dff5f9': [{'Year': '2011',
    'counts': 1497,
    'org': 'Board',
    'percentage': 76},
   {'Year': '2011', 'counts': 78023, 'org': 'Province', 'percentage': 65},
   {'Year': '2012', 'counts': 1650, 'org': 'Board', 'percentage': 80},
   {'Year': '2012', 'counts': 80429, 'org': 'Province', 'percentage': 66},
   {'Year': '2013', 'counts': 1657, 'org': 'Board', 'percentage': 80},
   {'Year': '2013', 'counts': 82928, 'org': 'Province', 'percentage': 68},
   {'Year': '2014', 'counts': 1612, 'org': 'Board', 'percentage': 78},
   {'Year': '2014', 'counts': 84985, 'org': 'Province', 'percentage': 70},
   {'Year': '2015', 'counts': 1728, 'org': 'Board', 'percentage': 82},
   {'Year': '2015', 'counts': None, 'org': 'Province', 'percentage': None},
   {'Year': '2016', 'counts': 1844, 'org': 'Board', 'percentage': 84},
   {'Year': '2016', 'counts': 85561, 'org': 'Province', 'percentage': 72},
   {'Year': '2017', 'counts': 1984, 'org': 'Board', 'percentage': 85},
   {'Year': '2017', 'counts': 93130, 'org': 'Province', 'percentage': 74},
   {'Year': '2018', 'counts': 1950, 'org': 'Board', 'percentage': 84},
   {'Year': '2018', 'counts': 93684, 'org': 'Province', 'percentage': 75}]},
 'height': 300,
 'layer': [{'encoding': {'color': {'field': 'org',
     'title': None,
     'type': 'nominal'},
    'tooltip': [{'field': 'percentage',
      'title': 'Percentage of Students',
      'type': 'quantitative'},
     {'field': 'counts',
      'title': 'Number of Students',
      'type': 'quantitative'},
     {'field': 'org', 'title': 'level', 'type': 'nominal'}],
    'x': {'axis': {'labelAngle': 55},
     'field': 'Year',
     'title': None,
     'type': 'nominal'},
    'y': {'field': 'percentage',
     'scale': {'domain': [0, 100]},
     'title': 'Percentage of Students',
     'type': 'quantitative'}},
   'mark': {'color': 'orange', 'point': True, 'type': 'line'}},
  {'encoding': {'text': {'field': 'percentage', 'type': 'quantitative'},
    'tooltip': [{'field': 'percentage',
      'title': 'Percentage of Students',
      'type': 'quantitative'},
     {'field': 'counts',
      'title': 'Number of Students',
      'type': 'quantitative'},
     {'field': 'org', 'title': 'level', 'type': 'nominal'}],
    'x': {'field': 'Year', 'type': 'nominal'},
    'y': {'field': 'percentage', 'type': 'quantitative'}},
   'mark': {'size': 15, 'type': 'text'}}],
 'title': 'Grade 3 Reading: Overall Achievement at or above the Provincial Standard',
 'width': 300}
1

There are 1 best solutions below

0
On BEST ANSWER

You can use the Altair HTMl renderer in Colab and then use the IPython display function to generate an out

import altair as alt
from IPython.display import display

spec = {
  "$schema": "https://vega.github.io/schema/vega-lite/v3.json",
  "data": {
    "values": [
      {"a": "A", "b": 28}, {"a": "B", "b": 55}, {"a": "C", "b": 43},
      {"a": "D", "b": 91}, {"a": "E", "b": 81}, {"a": "F", "b": 53},
      {"a": "G", "b": 19}, {"a": "H", "b": 87}, {"a": "I", "b": 52}
    ]
  },
  "mark": "bar",
  "encoding": {
    "x": {"field": "a", "type": "nominal", "axis": {"labelAngle": 0}},
    "y": {"field": "b", "type": "quantitative"}
  }
}

display(alt.display.html_renderer(spec), raw=True)