Currently to reinitialize a model for AutoModelForSequenceClassification
, we can do this:
from transformers import AutoModel, AutoConfig, AutoModelForSequenceClassification
m = "moussaKam/frugalscore_tiny_bert-base_bert-score"
config = AutoConfig.from_pretrained(m)
model_from_scratch = AutoModel(config)
model_from_scratch.save_pretrained("frugalscore_tiny_bert-from_scratch")
model = AutoModelForSequenceClassification(
"frugalscore_tiny_bert-from_scratch", local_files_only=True
)
Is there some way to reinitialize the model weights without saving a new pretrained model initialized with AutoConfig
?
model = AutoModelForSequenceClassification(
"moussaKam/frugalscore_tiny_bert-base_bert-score",
local_files_only=True
reinitialize_weights=True
)
or something like:
model = AutoModelForSequenceClassification(
"moussaKam/frugalscore_tiny_bert-base_bert-score",
local_files_only=True
)
model.reinitialize_parameters()
That is the purpose of from_config (i.e. creating a model but not loading the respective weights):
Output: