I'm using Keras to build GAN based on Conv1DTranspose layers. I would like to implement a GAN model (especially for the generator). However, I couldn't make the right architecture. Could you help me for these points:
(1) The problem is the size of my input (noise) does not match as per Keras documentation. So, I couldn't build the network from the beginning.
(2) How to perform "reshape" from Conv1DTranspose layer output to Conv1D layer ?
Thank you,,
The generator architecture which I want to replicate:
This is my code:
# define generator model
def define_generator(latent_dim, n_outputs=1):
model = Sequential()
# reshape layer
model.add(Dense(1 * 10 * 10, activation="relu", input_dim=(latent_dim)))
model.add(Reshape((10, 10, 1)))
# 1D Transposed Convolutional Layer
model.add(Conv1DTranspose(filters=32, kernel_size=4, strides=1))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.1))
model.add(Conv1DTranspose(filters=64, kernel_size=4, strides=1))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.1))
model.add(Conv1DTranspose(filters=128, kernel_size=4, strides=1))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.1))
# 1D Convolutional Layer
model.add(Conv1D(filters=128, kernel_size=4, strides=1))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.1))
model.add(Conv1D(filters=64, kernel_size=4, strides=1))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.1))
model.add(Conv1D(filters=32, kernel_size=4, strides=1))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.1))
# output layer
model.add(Dense(n_outputs, activation='sigmoid'))
print('Generator')
model.summary()
return model
The error messages:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-70-a8709ad0f7a6> in <module>()
1 latent_dim = 100
2
----> 3 generator = define_generator(latent_dim)
6 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/layers/convolutional.py in build(self, input_shape)
944 if len(input_shape) != 3:
945 raise ValueError('Inputs should have rank 3. Received input shape: ' +
--> 946 str(input_shape))
947 channel_axis = self._get_channel_axis()
948 if input_shape.dims[channel_axis].value is None:
ValueError: Inputs should have rank 3. Received input shape: (None, 10, 10, 1)
the Conv1DTranspose return a tensor with shape (None, 10, 10, 1), so before the 1D Convolutional layer try to add one Reshape layer to squeeze it back to 3D tensor with the appropriate shape