I'm a newbie to Haskell, I have a problem. I need to write a function that splits a list into a list of lists everywhere a 'separation' appears.
How to split a list into a list of lists by removing a specific separation(Haskell)
1.7k Views Asked by keduadoi AtThere are 3 best solutions below

I don't know how to test it. Anybody tells me how to write a function to a .hs file and use winGHCi to run this function?
WinGHCi automatically associates with .hs files so just double-click on the file and ghci should start up. After making some changes to the file using your favourite editor you can write use the :r
command in ghci to reload the file.
To test the program after fixing typos, type-errors, and ensuring correct indentation, try calling functions you have defined with different inputs (or use QuickCheck). Note Maybe
is defined as Just x
or Nothing
. You can use fromMaybe
to extract x
(and provide default value for the Nothing case).
Also try to make sure that pattern matching is exhaustive.

I will try to help you develop the understanding of how to develop functions that work on lists via recursion. It is helpful to learn how to do it first in a 'low-level' way so you can understand better what's happening in the 'high-level' ways that are more common in real code.
First, you must think about the nature of the type of data that you want to work with. The list is in some sense the canonical example of a recursively-defined type in Haskell: a list is either the empty list []
or it is some list element a
combined with a list via a : list
. Those are the only two possibilities. We call the empty list the base case because it is the one that does not refer to itself in its definition. If there were no base case, recursion would never "bottom out" and would continue indefinitely!
The fact that there are two cases in the definition of a list means that you must consider two cases in the definition of a function that works with lists. The canonical way to consider multiple cases in Haskell is pattern matching. Haskell syntax provides a number of ways to do pattern matching, but I'll just use the basic case
expression for now:
case xs of
[] -> ...
x:xs' -> ...
Those are the two cases one must consider for a list. The first matches the literal empty list constructor; the second matches the element-adding constructor :
and also binds two variables, x
and xs'
, to the first element in the list and the sublist containing the rest of the elements.
If your function was passed a list that matches the first case, then you know that either the initial list was empty or that you have completed the recursion on the list all the way past its last element. Either way, there is no more list to process; you are either finished (if your calls were tail-recursive) or you need to pass the basic element of your answer construction back to the function that called this one (by returning it). In the case that your answer will be a list, the basic element will usually be the empty list again []
.
If your function was passed a list that matches the second case, then you know that it was passed a non-empty list, and furthermore you have a couple of new variables bound to useful values. Based on these variables, you need to decide two things:
- How do I do one step of my algorithm on that one element, assuming I have the correct answer from performing it on the rest of the list?
- How do I combine the results of that one step with the results of performing it on the rest of the list?
Once you've figured the answers to those questions, you need to construct an expression that combines them; getting the answer for the rest of the list is just a matter of invoking the recursive call on the rest of the list, and then you need to perform the step for the first element and the combining.
Here's a simple example that finds the length of a list
listLength :: [a] -> Int
listLength as =
case as of
[] -> 0 -- The empty list has a length of 0
a:as' -> 1 + listlength as' -- If not empty, the length is one more than the
-- length of the rest of the list
Here's another example that removes matching elements from a list
listFilter :: Int -> [Int] -> Int
listFilter x ns =
case ns of
[] -> [] -- base element to build the answer on
n:ns' -> if n == x
then listFilter x ns' -- don't include n in the result list
else n : (listFilter x ns') -- include n in the result list
Now, the question you asked is a little bit more difficult, as it involves a secondary 'list matching' recursion to identify the separator within the basic recursion on the list. It is sometimes helpful to add extra parameters to your recursive function in order to hold extra information about where you are at in the problem. It's also possible to pattern match on two parameters at the same time by putting them in a tuple:
case (xs, ys) of
([] , [] ) -> ...
(x:xs', [] ) -> ...
([] , y:ys') -> ...
(x:xs', y:ys') -> ...
Hopefully these hints will help you to make some progress on your problem!
Let's see if the problem can be reduced in a obvious way.
Suppose splitList is called with xs to split and ys as the separator. If xs is empty, the problem is the smallest, so what's the answer to that problem? It is important to have the right answer here, because the inductive solution depends on this decision. But we can make this decision later.
Ok, so for problem to be reducable, the list xs is not empty. So, it has at least a head element h and the smaller problem t, the tail of the list: you can match xs@(h:t). How to obtain the solution to the smaller problem? Well, splitList can solve that problem by the definition of the function. So now the trick is to figure out how to build the solution for bigger problem (h:t), when we know the solution to the smaller problem zs=splitList t ys. Here we know that zs is the list of lists, [[a]], and because t may have been the smallest problem, zs may well be the solution to the smallest problem. So, whatever you do with zs, it must be valid even for the solution to the smallest problem.