Question
Here's a function to calculate alphashape of a set of points. It's from the documentation of the library 'alphashape'.
points_2d = [(0., 0.), (0., 1.), (1., 1.), (1., 0.),(0.5, 0.25), (0.5, 0.75), (0.25, 0.5), (0.75, 0.5)]
alpha_shape = alphashape(
points_2d,
lambda ind, r: 1.0 + any(np.array(points_2d)[ind][:,0] == 0.0))
I don't understand how the lambda
function above works in the following context (an excerpt from library's source code).
Specifically, my questions are:
- where does variable
r
come from? - what does
[:,0]
mean?
Context
def alphashape(points: Union[List[Tuple[float]], np.ndarray],
alpha: Union[None, float] = None):
coords = np.array(points)
for point_indices, circumradius in alphasimplices(coords):
if callable(alpha):
resolved_alpha = alpha(point_indices, circumradius)
from scipy.spatial import Delaunay
def alphasimplices(points: Union[List[Tuple[float]], np.ndarray]) -> \
Union[List[Tuple[float]], np.ndarray]:
coords = np.asarray(points)
tri = Delaunay(coords)
for simplex in tri.simplices:
simplex_points = coords[simplex]
try:
yield simplex, circumradius(simplex_points)
def circumradius(points: Union[List[Tuple[float]], np.ndarray]) -> float:
points = np.asarray(points)
return np.linalg.norm(points[0, :] - np.dot(circumcenter(points), points))
def circumcenter(points: Union[List[Tuple[float]], np.ndarray]) -> np.ndarray:
points = np.asarray(points)
num_rows, num_columns = points.shape
A = np.bmat([[2 * np.dot(points, points.T),
np.ones((num_rows, 1))],
[np.ones((1, num_rows)), np.zeros((1, 1))]])
b = np.hstack((np.sum(points * points, axis=1),
np.ones((1))))
return np.linalg.solve(A, b)[:-1]