I'd like to train a neural network (NN) on my own 1-dim data, which I stored in a hdf5 database for caffe. According to the documetation this should work. It also works for me as far as I only use "Fully Connected Layers", "Relu" and "Dropout". However I get an error when I try to use "Convolution" and "Max Pooling" layers in the NN architecture. The error complains about the input dimension of the data.
I0622 16:44:20.456007 9513 net.cpp:84] Creating Layer conv1
I0622 16:44:20.456015 9513 net.cpp:380] conv1 <- data
I0622 16:44:20.456048 9513 net.cpp:338] conv1 -> conv1
I0622 16:44:20.456061 9513 net.cpp:113] Setting up conv1
F0622 16:44:20.456487 9513 blob.cpp:28] Check failed: shape[i] >= 0 (-9 vs. 0)
This is the error when I only want to use a "Pooling" layer behind an "InnerProduct" layer:
I0622 16:52:44.328660 9585 net.cpp:338] pool1 -> pool1
I0622 16:52:44.328666 9585 net.cpp:113] Setting up pool1
F0622 16:52:44.328680 9585 pooling_layer.cpp:84] Check failed: 4 == bottom[0]->num_axes() (4 vs. 2) Input must have 4 axes, corresponding to (num, channels, height, width)
However I don't know how to change the input dimensions such that it works. This is the beginning of my prototxt file specifying the network architecture:
name: "LeNet"
layer {
name: "myNet"
type: "HDF5Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
hdf5_data_param {
source: "/path/to/my/data/train.txt"
batch_size: 200
}
}
layer {
name: "myNet"
type: "HDF5Data"
top: "data"
top: "label"
include {
phase: TEST
}
hdf5_data_param {
source: "/path/to/my/data/test.txt"
batch_size: 200
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 1
kernel_h: 11
kernel_w: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_h: 3
kernel_w: 1
stride: 2
}
}
And this is how I output my 4D-database (with two singleton dimensions) using Matlabs h5write function:
h5create('train.h5','/data',[dimFeats 1 1 numSamplesTrain]);
h5write('train.h5','/data', traindata);
You seem to be outputting your data using the wrong shape. Caffe blobs have the dimensions
(n_samples, n_channels, height, width)
.Other than that your prototxt seems to be fine for doing predictions based on a 1D input.