How to use ordinal classifier?

2.3k Views Asked by At

I am trying to implement an ordinal classifier in a training exercise and am having some trouble. I cannot use one vs all classifier because my classes are ordinal. There is no function for ordinal classifiers so i found this code below on the internet. (source: https://towardsdatascience.com/simple-trick-to-train-an-ordinal-regression-with-any-classifier-6911183d2a3c).

Im confused on how i am supposed to use it though... i have a training and testing data set...but how do i incorporate those? for example, for logistic regression i understand you would have code like this:

model = LogisticRegression()    
model.fit(x_train, y_train)

but how do i use this code? and how do i get the probabilities?

code from website:

from sklearn.base import clone
    
class OrdinalClassifier():
        
    def __init__(self, clf):
        self.clf = clf
        self.clfs = {}
    
    def fit(self, X, y):
        self.unique_class = np.sort(np.unique(y))
        if self.unique_class.shape[0] > 2:
            for i in range(self.unique_class.shape[0]-1):
                # for each k - 1 ordinal value we fit a binary classification problem
                binary_y = (y > self.unique_class[i]).astype(np.uint8)
                clf = clone(self.clf)
                clf.fit(X, binary_y)
                self.clfs[i] = clf
    
    def predict_proba(self, X):
        clfs_predict = {k:self.clfs[k].predict_proba(X) for k in self.clfs}
        predicted = []
        for i,y in enumerate(self.unique_class):
            if i == 0:
                # V1 = 1 - Pr(y > V1)
                predicted.append(1 - clfs_predict[y][:,1])
            elif y in clfs_predict:
                # Vi = Pr(y > Vi-1) - Pr(y > Vi)
                 predicted.append(clfs_predict[y-1][:,1] - clfs_predict[y][:,1])
            else:
                # Vk = Pr(y > Vk-1)
                predicted.append(clfs_predict[y-1][:,1])
        return np.vstack(predicted).T
    
    def predict(self, X):
        return np.argmax(self.predict_proba(X), axis=1)
3

There are 3 best solutions below

0
On

Faced some errors when running the code, so I do some changes to the code:

from sklearn.base import clone
import numpy as np
# Source:
# 1. https://stackoverflow.com/questions/66486947/how-to-use-ordinal-classifier
# 2. https://towardsdatascience.com/simple-trick-to-train-an-ordinal-regression-with-any-classifier-6911183d2a3c


class OrdinalClassifier():

    def __init__(self, clf):
        self.clf = clf
        self.clfs = {}

    def fit(self, X, y):
        self.unique_class = np.sort(np.unique(y))
        if self.unique_class.shape[0] > 2:
            for i in range(self.unique_class.shape[0] - 1):
                # for each k - 1 ordinal value we fit a binary classification problem
                binary_y = (y > self.unique_class[i]).astype(np.uint8)
                clf = clone(self.clf)
                clf.fit(X, binary_y)
                self.clfs[i] = clf

    def predict_proba(self, X):
        clfs_predict = {k: v.predict_proba(X) for k, v in self.clfs.items()}
        predicted = []
        for i, y in enumerate(self.unique_class):
            if i == 0:
                # V1 = 1 - Pr(y > V1)
                predicted.append(1 - clfs_predict[i][:, 1])
            elif y in clfs_predict:
                # Vi = Pr(y > Vi-1) - Pr(y > Vi)
                predicted.append(clfs_predict[i - 1][:, 1] - clfs_predict[i][:, 1])
            else:
                # Vk = Pr(y > Vk-1)
                predicted.append(clfs_predict[i - 1][:, 1])
        return np.vstack(predicted).T

    def predict(self, X):
        return self.unique_class[np.argmax(self.predict_proba(X), axis=1)]

So back to your question:

i have a training and testing data set...but how do i incorporate those?

You can easily implement the code like this:

knn = KNeighborsClassifier()
oc = OrdinalClassifier(knn)
oc.fit(X_train, y_train)
oc.predict(X_test)

The output will be the predicted class labels for the test set. You can hence call sklearn's confusion matrix to check the accuracy etc.

how do i get the probabilities?

You can get probabilities for each class as below:

oc.predict_proba(X_test)

You will get the probabilities of each class in numpy's 2d array with m x n dimension where m is the number of instances and n is the number of classes

1
On

If you check the article's comments you will see that the proposed algorithm is not properly formualted as explained by @Arindam Paul: "Because you are subtracting probabilities from different classifiers in the ensemble, it is possible to have individual probabilities become negative. I tested this for my problem and found negative probabilities for some cases."

There is a solution proposed @CloudDude here: https://github.com/leeprevost/OrdinalClassifier

1
On

Taken from: https://github.com/leeprevost/OrdinalClassifier

import numpy as np
import scipy.sparse as sp

from sklearn.base import BaseEstimator, ClassifierMixin, clone, is_classifier
from sklearn.base import MultiOutputMixin
from sklearn.base import MetaEstimatorMixin, is_regressor
from sklearn.utils.deprecation import deprecated
from sklearn.utils._tags import _safe_tags
from sklearn.utils.validation import _num_samples
from sklearn.utils.validation import check_is_fitted
from sklearn.utils.multiclass import (
    _check_partial_fit_first_call,
    type_of_target
)
from sklearn.utils.metaestimators import _safe_split, available_if
from sklearn.utils.fixes import delayed
from sklearn.multiclass import (
    _fit_binary,
    _fit_ovo_binary,

    _estimators_has
)
from joblib import Parallel

_fit_ovr_binary = _fit_binary
from typing import Iterable


class OrdinalClassifier(
    MultiOutputMixin, ClassifierMixin, MetaEstimatorMixin, BaseEstimator
):
    """Ordinal multiclass strategy.

    This classifier is based on a "Simple Approach to Oridinal Classification"
    by Frank and Hall as oultined in this paper.

    https://www.cs.waikato.ac.nz/~eibe/pubs/ordinal_tech_report.pdf

    Adapted Abstract:
    Machine learning methods for classification problems commonly assume
    that the class values are unordered. However, in many practical applications
    the class values do exhibit a natural order—for example, when learning how to grade
    or when classifying sentiment (disagree < neutral < agree), temperatures (cold <
    warm < hot).  The standard approach to ordinal classification converts the class
    value into a numeric quantity and applies a regression learner to the transformed
    data, translating the output back into a discrete class value in a post-processing
    step. A disadvantage of this method is that it can only be applied in conjunction with a
    regression scheme.

    The method enables standard classification algorithms to make use of ordering information
    in class attributes.   The authors have shown in their work this classifier
    outperforms the naive state.

    The method utilizes a 'simple trick' to allow the underlying classifiers to take
    advantage of the ordinal class information.   First, the data is tranformed from a k-class
    ordinal problem to a n_classes - 1 binary class problem. Training starts by deriving new datasets from
    the original dataset, one for each of the n_classes -1 binary class attributes.

    --------
    Ordinal attribute A* with ordered values V1, V2, ..., Vk into n_classes-1 binary attrbutes,
    one for each of the original attribute's first n_classes-1 values.  The ith binary attribute
    represents the test A* > Vi.
    --------

    @todo: should this stay in?  My starting point was to use OvR as basis.  (not tested)
    OrdinalClassifier can also be used for multilabel classification. To use
    this feature, provide an indicator matrix for the target `y` when calling
    `.fit`. In other words, the target labels should be formatted as a 2D
    binary (0/1) matrix, where [i, j] == 1 indicates the presence of label j
    in sample i. This estimator uses the binary relevance method to perform
    multilabel classification, which involves training one binary classifier
    independently for each label.
    Read more in the :ref:`User Guide <ovr_classification>`.
    Parameters
    ----------
    estimator : estimator object
        An estimator object implementing :term:`fit` and one of
        :term:`decision_function` or :term:`predict_proba`.
    n_jobs : int, default=None
        The number of jobs to use for the computation: the `n_classes`
        k-1 (n-1) ordinal problems problems are computed in parallel.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.
        .. versionchanged:: v0.20
           `n_jobs` default changed from 1 to None
    reverse_classes  : reorders classes to shift the importance of the classes (eg. hot>mild>cold)
    class_order: override the default sorted(np.unique(y)) classes_ attribute to shift order of computation of ordinals.
        @todo:  add validation of class order.

    Attributes  (based on OvR classifier -- @todo: edit)
    ----------
    estimators_ : list of `n_classes` - 1  estimators
        Estimators used for predictions.  Each classifies a derived y as produced by private method.
    coef_ : ndarray of shape (1, n_features) or (n_classes, n_features)
        Coefficient of the features in the decision function. This attribute
        exists only if the ``estimators_`` defines ``coef_``.
        .. deprecated:: 0.24
            This attribute is deprecated in 0.24 and will
            be removed in 1.1 (renaming of 0.26). If you use this attribute
            in :class:`~sklearn.feature_selection.RFE` or
            :class:`~sklearn.feature_selection.SelectFromModel`,
            you may pass a callable to the `importance_getter`
            parameter that extracts feature the importances
            from `estimators_`.
    intercept_ : ndarray of shape (1, 1) or (n_classes, 1)
        If ``y`` is binary, the shape is ``(1, 1)`` else ``(n_classes, 1)``
        This attribute exists only if the ``estimators_`` defines
        ``intercept_``.
        .. deprecated:: 0.24
            This attribute is deprecated in 0.24 and will
            be removed in 1.1 (renaming of 0.26). If you use this attribute
            in :class:`~sklearn.feature_selection.RFE` or
            :class:`~sklearn.feature_selection.SelectFromModel`,
            you may pass a callable to the `importance_getter`
            parameter that extracts feature the importances
            from `estimators_`.
    classes_ : array, shape = [`n_classes`]
        Class labels.
    n_classes_ : int
        Number of classes.
    multilabel_ : boolean  @todo: need to turn this off for now.  Untested.
        Whether a OrdinalClassifier is a multilabel classifier.
    n_features_in_ : int
        Number of features seen during :term:`fit`. Only defined if the
        underlying estimator exposes such an attribute when fit.
        .. versionadded:: 0.24
    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Only defined if the
        underlying estimator exposes such an attribute when fit.
        .. versionadded:: 1.0
    ordinal_prob_names_ : generated by predict_proba method.  List of ordinal probability
        names that correspond to the paper an to the order of classes_ of n_classes length

    See Also
    --------
    MultiOutputClassifier : Alternate way of extending an estimator for
        multilabel classification.

    Examples  (@todo: redo)
    --------
    >>> import numpy as np
    >>> from sklearn.multiclass import OneVsRestClassifier
    >>> from sklearn.svm import SVC
    >>> X = np.array([
    ...     [10, 10],
    ...     [8, 10],
    ...     [-5, 5.5],
    ...     [-5.4, 5.5],
    ...     [-20, -20],
    ...     [-15, -20]
    ... ])
    >>> y = np.array([0, 0, 1, 1, 2, 2])
    >>> clf = OneVsRestClassifier(SVC()).fit(X, y)
    >>> clf.predict([[-19, -20], [9, 9], [-5, 5]])
    array([2, 0, 1])

    Adapted by: Lee Prevost, https://github.com/leeprevost
    """

    def __init__(self, estimator, *, n_jobs=None, reverse_classes=False):
        self.estimator: BaseEstimator = estimator
        self.n_jobs: int = n_jobs
        self.reverse_classes: bool = reverse_classes
        self.class_order: Iterable = []
        self._class_ = None  # private for class_

        # validate estimator
        if not self._has_predict_proba:
            raise ValueError(
                "Estimator {} does not have predict_proba method which is required for this classifier.".format(
                    self.estimator.__repr__()))

    def fit(self, X, y):
        """Fit underlying estimators.
        Parameters
        ----------
        X : (sparse) array-like of shape (n_samples, n_features)
            Data.
        y : (sparse) array-like of shape (n_samples,) or (n_samples, n_classes)
            Multi-class targets. An indicator matrix turns on multilabel
            classification.


        Returns
        -------
        self : object
            Instance with fitted estimators_ as follows:

            If X has n_classes_, (eg. classes: c0, c1, c2, c3 = 4)

            Produce n-1 estimators each with the binary problem of classifying derived datasets as follows:

                e1 - target > class0 (meaning > order)  --> target = c1, c2, c3  (~ target != c0)   (first class v rest - OvR)
                e2 - target > class1                    --> target = c2, c3  (~target != c0, c2)    (second class v third, fourth (OvR)
                e3 - target > class2                    --> target = c3  (~ target != c0, c1, c2)   (third class vs. fourth(OvO))

            ">" means a higher order than the target class.

        """
        # @todo: keep? same as ovr?

        # following improvised from
        # https://towardsdatascience.com/simple-trick-to-train-an-ordinal-regression-with-any-classifier-6911183d2a3c
        # by Muhammad

        if self.class_order:  # case to override everything
            self.classes_ = self.class_order
            # if order is given in the init, ignore reversed and ignore cat info
            # validate class order and stop if invalid
            # need validation of class order.
            # raise error if not superset of class.
            # warning if any missing classes not see during fit.

        # if y has categorical info, capture it

        elif hasattr(y, "cat"):
            if y.cat.ordered:  #has categories and its ordered
                classes = y.cat.categories.to_numpy()
                self.classes_ = classes  # setter converts to np.array from index

        else:  #this is most likely path but handle other two cases above.
            self.classes_ = np.sort(np.unique(y))

        # ok, now order is set.  Now, reverse it unless it was supplied

        if self.reverse_classes and not self.class_order:
            self.classes_ = self.classes_[::-1]



        self.y_type_ = type_of_target(y)

        if self.y_type_ is not "multiclass":
            raise ValueError("This classifier expects target y to be multiclass.  Got type: {}".format(self.y_type_))

        # In cases where individual estimators are very fast to train setting
        # n_jobs > 1 in can results in slower performance due to the overhead
        # of spawning threads.  See joblib issue #112.

        if self.classes_.shape[0] > 2:
            # for each k - 1 ordinal value we fit a binary classification problem

            # @todo: question - should I allow for this to be reversed with kwargs in order to
            # emphasize the positive class (eg. "hot" in cold < warm < hot three class problem)

            # @todo: derived estimators: classes become imbalanced? how to balance classes?
            # probable answer: make use of "class_weight" kwarg when fitting derived estimators?

            y_derived, names = self._derived_ys(
                y)  # added helper to create vector of derived y data (of shape n_samples, n_classes-1)

            self.estimators_ = Parallel(n_jobs=self.n_jobs)(
                delayed(_fit_ovr_binary)(
                    self.estimator,
                    X,
                    y_d,
                    classes=[
                        "not %s" % self.classes_[i],
                        " or ".join(str(cls) for cls in self.classes_[i + 1:]),
                    ],

                )
                for i, y_d in enumerate(y_derived.T)
            )  # create a binary estimator for each derived y

        if hasattr(self.estimators_[0], "n_features_in_"):
            self.n_features_in_ = self.estimators_[0].n_features_in_
        if hasattr(self.estimators_[0], "feature_names_in_"):
            self.feature_names_in_ = self.estimators_[0].feature_names_in_

        return self

    @available_if(_estimators_has("partial_fit"))
    def partial_fit(self, X, y, classes=None):
        """Partially fit underlying estimators.
        Should be used when memory is inefficient to train all data.
        Chunks of data can be passed in several iteration.
        Parameters
        ----------
        X : (sparse) array-like of shape (n_samples, n_features)
            Data.
        y : (sparse) array-like of shape (n_samples,) or (n_samples, n_classes)
            Multi-class targets. An indicator matrix turns on multilabel
            classification.
        classes : array, shape (n_classes, )
            Classes across all calls to partial_fit.
            Can be obtained via `np.unique(y_all)`, where y_all is the
            target vector of the entire dataset.
            This argument is only required in the first call of partial_fit
            and can be omitted in the subsequent calls.
        Returns
        -------
        self : object
            Instance of partially fitted estimator.
        """

        pass  # for now bypass this and edit it later.  @todo: implement partial_fit

        '''
        if _check_partial_fit_first_call(self, classes):
            if not hasattr(self.estimator, "partial_fit"):
                raise ValueError(
                    ("Base estimator {0}, doesn't have partial_fit method").format(
                        self.estimator
                    )
                )
            self.estimators_ = [clone(self.estimator) for _ in range(self.n_classes_)]

            # A sparse LabelBinarizer, with sparse_output=True, has been
            # shown to outperform or match a dense label binarizer in all
            # cases and has also resulted in less or equal memory consumption
            # in the fit_ovr function overall.
            self.label_binarizer_ = LabelBinarizer(sparse_output=True)
            self.label_binarizer_.fit(self.classes_)

        if len(np.setdiff1d(y, self.classes_)):
            raise ValueError(
                (
                        "Mini-batch contains {0} while classes " + "must be subset of {1}"
                ).format(np.unique(y), self.classes_)
            )

        # this is where we need n-1 targets from binarizer.
        # y > Vi
        Y = self.label_binarizer_.transform(y)
        Y = Y.tocsc()
        columns = (col.toarray().ravel() for col in Y.T)

        self.estimators_ = Parallel(n_jobs=self.n_jobs)(
            delayed(_partial_fit_binary)(estimator, X, column)
            for estimator, column in zip(self.estimators_, columns)
        )

        if hasattr(self.estimators_[0], "n_features_in_"):
            self.n_features_in_ = self.estimators_[0].n_features_in_

        return self '''

    def predict(self, X):
        """Predict multi-class targets using underlying estimators.

        **estimator must have predict_proba method.

        Parameters
        ----------
        X : (sparse) array-like of shape (n_samples, n_features)
            Data.
        Returns
        -------
        y : (sparse) array-like of shape (n_samples,) or (n_samples, n_classes)
            Predicted multi-class targets.
        """
        check_is_fitted(self)

        n_samples = _num_samples(X)
        if self.y_type_ == "multiclass":
            return self.classes_[np.argmax(self.predict_proba(X), axis=1)]

        # need to rewrite the following if not "multiclass" or no predict_proba or want to use threshold
        else:
            # replaced elaborate else logic from OvR with NotImplementedError
            raise NotImplementedError("This type of y target not implemented:  type: ".format(self.y_type_))

    @available_if(_estimators_has("predict_proba"))
    def predict_proba(self, X):
        """Probability estimates.
        The returned estimates for all classes are ordered by label of classes.
        Note that in the multilabel case, each sample can have any number of
        labels. This returns the marginal probability that the given sample has
        the label in question. For example, it is entirely consistent that two
        labels both have a 90% probability of applying to a given sample.
        In the single label multiclass case, the rows of the returned matrix
        sum to 1.
        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Input data.
        Returns
        -------
        T : (sparse) array-like of shape (n_samples, n_classes)
            Returns the probability of the sample for each class in the model,
            where classes are ordered as they are in `self.classes_`.

        @todo: multilabel is untested
        """
        check_is_fitted(self)
        # Y[i, j] gives the probability that sample i has the label j.
        # In the multi-label case, these are not disjoint.
        Y = np.array([e.predict_proba(X)[:, 1] for e in self.estimators_]).T

        if len(self.estimators_) == 1:  # binary problem
            # Only one estimator, but we still want to return probabilities
            # for two classes.
            Y = np.concatenate(((1 - Y), Y), axis=1)
            predicted = Y

        else:
            predicted = self._ordinal_binary_to_class_array(Y)

        if not self.multilabel_:
            # Then, probabilities should be normalized to 1.
            predicted /= np.sum(predicted, axis=1)[:, np.newaxis]

        return predicted

    @available_if(_estimators_has('decision_function'))
    def decision_function(self, X):
        """Decision function for the OneVsRestClassifier.
        Return the distance of each sample from the decision boundary for each
        class. This can only be used with estimators which implement the
        `decision_function` method.
        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Input data.
        Returns
        -------
        T : array-like of shape (n_samples, n_classes) or (n_samples,) for \
            binary classification.
            Result of calling `decision_function` on the final estimator.
            .. versionchanged:: 0.19
                output shape changed to ``(n_samples,)`` to conform to
                scikit-learn conventions for binary classification.
        """

        check_is_fitted(self)
        if len(self.estimators_) == 1:
            return self.estimators_[0].decision_function(X)
        else:
            Y = np.array([e.predict_proba(X) for e in self.estimators_]).T
            decision = self._ordinal_binary_to_class_array(Y)
            return decision

    def _ordinal_binary_to_class_array(self, Y):
        predicted = []
        pr_name = "Pr(y={})"
        for i, cls in enumerate(self.classes_):
            pr_names = "Pr"

            if i == 0:  # first pass
                # Pr(V1) = 1 − Pr(Target > V1)
                predicted.append((pr_name.format(cls), 1 - Y[:, 0]))  # first class
            elif cls == self.classes_[-1]:  # last pass
                # Pr(Vk) = Pr(Target > Vk−1)
                predicted.append((pr_name.format(cls), Y[:, -1]))  # last class
            elif i > 0:  # middle passes, need qualifier so it doesn't overwrite last class. this shouldn't exec on i=0 and last pass.
                # Pr(Vi) = Pr(Target > Vi−1) − Pr(Target > Vi) , 1 < i < k
                predicted.append((pr_name.format(cls), Y[:, i - 1] - Y[:, i]))  # middle classes

        self.ordinal_prob_names_ = [name for name, _ in predicted]

        predicted = np.vstack(list(prob for _, prob in predicted)).T
        return predicted

    def _derived_ys(self, y):
        """private function that generates n_classes - 1 derived y datasets which iterate through
            classes_ with a ptr and does comparison to remaining classes pointed to beyond current class
            eg. np.isin(y, classes_[ptr:])

            returns array of probabilities, names or arrays

            consider classes_ = 0, 1, 2, 3, 4

                4 estimators (n_classes -1)

                                    ovr(emaining)
                binary estimators   derived ys (0|1)
                e1 (y>c0)           y(0|1,2,3,4)
                e2 (y>c1)           y(1|2,3,4)
                e3 (y>c2)           y(2|3,4)
                e4 (y>c3)           y(3|4)

            I found the Ordinal Classifier white paper to be very difficult to follow until I understood:
                Prob(target > cool) ~ y cool|warm,hot
            """
        derived = []
        names = []
        for i in range(len(self.classes_) - 1):
            ptr = i + 1  # pts to start ndx of remaining classes
            # one class vs. remaining classes
            class_name = self.classes_[i]  # 'one' class name
            remaining_classes = self.classes_[ptr:]  # r - remaining classes
            y_ = np.isin(y, remaining_classes) * 1
            derived.append(y_)
            names.append("V{}: y>class({})".format(ptr, class_name))
        return np.vstack(derived).T, np.array(names)

    @property
    def multilabel_(self):
        """Whether this is a multilabel classifier."""
        return self.y_type_.startswith("multilabel")

    @property
    def n_classes_(self):
        """Number of classes."""
        return len(self.classes_)

    # TODO: Remove coef_ attribute in 1.1
    # mypy error: Decorated property not supported
    @deprecated(  # type: ignore
        "Attribute `coef_` was deprecated in "
        "version 0.24 and will be removed in 1.1 (renaming of 0.26). "
        "If you observe this warning while using RFE "
        "or SelectFromModel, use the importance_getter "
        "parameter instead."
    )
    @property
    def coef_(self):
        check_is_fitted(self)
        if not hasattr(self.estimators_[0], "coef_"):
            raise AttributeError("Base estimator doesn't have a coef_ attribute.")
        coefs = [e.coef_ for e in self.estimators_]
        if sp.issparse(coefs[0]):
            return sp.vstack(coefs)
        return np.vstack(coefs)

    # TODO: Remove intercept_ attribute in 1.1
    # mypy error: Decorated property not supported
    @deprecated(  # type: ignore
        "Attribute `intercept_` was deprecated in "
        "version 0.24 and will be removed in 1.1 (renaming of 0.26). "
        "If you observe this warning while using RFE "
        "or SelectFromModel, use the importance_getter "
        "parameter instead."
    )
    @property
    def intercept_(self):
        check_is_fitted(self)
        if not hasattr(self.estimators_[0], "intercept_"):
            raise AttributeError("Base estimator doesn't have an intercept_ attribute.")
        return np.array([e.intercept_.ravel() for e in self.estimators_])

    # TODO: Remove in 1.1
    # mypy error: Decorated property not supported
    @deprecated(  # type: ignore
        "Attribute `_pairwise` was deprecated in "
        "version 0.24 and will be removed in 1.1 (renaming of 0.26)."
    )
    @property
    def _pairwise(self):
        """Indicate if wrapped estimator is using a precomputed Gram matrix"""
        return getattr(self.estimator, "_pairwise", False)

    def _more_tags(self):
        """Indicate if wrapped estimator is using a precomputed Gram matrix"""
        return {"pairwise": _safe_tags(self.estimator, key="pairwise")}

    @property
    def _has_decision_function(self):
        return hasattr(self.estimator, "decision_function")

    @property
    def _has_predict_proba(self):
        return hasattr(self.estimator, "predict_proba")

    @property
    def class_(self):
        return self._class_

    @class_.setter
    def class_(self, iterable):
        self._class_ = np.array(iterable)