(Post has been reframed to get more clarity & also updated all links)
Recently got to know about dtplyr package so was trying to use them to make my existing code work faster by using lazy_dt() instead of just dplyr.
But I am getting error when I run them:
step1: data:
library(tidyverse)
library(sf)
library(lubridate)
library(scales)
library(glue)
library(dtplyr)
library(data.table)
vaccination_data <- readRDS(url("https://raw.githubusercontent.com/johnsnow09/covid19-df_stack-code/main/vaccination_data.rds"))
(UPDATED correct Shape file) Step1.2: Download shape file from: https://github.com/johnsnow09/covid19-df_stack-code/blob/main/in_countries.shp
step2: convert to lazy_dt()
# creating new dataset to keep difference in both datasets
vaccination_data2 <- lazy_dt(vaccination_data)
Step3: plotting of lazy_dt()
i.e vaccination_data2
doesn't work where as plotting of usual dataframe / tibble i.e vaccination_data
works
# using lazy_dt data
vaccination_data2 %>%
filter(date > ymd("2020-12-31")) %>%
mutate(month_col = lubridate::month(date, label = TRUE)) %>%
arrange(date) %>%
group_by(Country.Region, iso_code, month_col) %>%
summarise(total_vaccinations = last(total_vaccinations),
.groups = "drop") %>%
ungroup() %>%
full_join(sf::read_sf("in_countries.shp") %>%
st_as_sf(),
by = c("iso_code" = "iso_a3")) %>%
dplyr::select(Country.Region,iso_code,month_col,total_vaccinations,geometry) %>%
filter(!is.na(total_vaccinations)) %>%
as.tibble() %>%
st_as_sf() %>% st_transform(crs = 4326) %>%
ggplot() +
geom_sf(aes(fill = total_vaccinations), color = "white") +
scale_fill_gradient2_tableau(
palette = "Sunset-Sunrise Diverging",
na.value = "lightgrey",
guide = "colourbar",
labels = unit_format(unit = "M", scale = 1e-6)
) +
theme_map() +
facet_wrap(~month_col) +
theme(strip.background = element_blank(),
strip.text = element_text(face = "bold", size = 14),
legend.position = "right")
Gives error: Error in CPL_transform(x, crs, aoi, pipeline, reverse, desired_accuracy, : Not compatible with STRSXP: [type=NULL].
Below code with vaccination_data
works
# using usual data frame / tibble
vaccination_data %>%
filter(date > ymd("2020-12-31")) %>%
mutate(month_col = lubridate::month(date, label = TRUE)) %>%
arrange(date) %>%
group_by(Country.Region, iso_code, month_col) %>%
summarise(total_vaccinations = last(total_vaccinations),
.groups = "drop") %>%
ungroup() %>%
full_join(sf::read_sf("in_countries.shp") %>%
st_as_sf(),
by = c("iso_code" = "iso_a3")) %>%
dplyr::select(Country.Region,iso_code,month_col,total_vaccinations,geometry) %>%
filter(!is.na(total_vaccinations)) %>%
as.tibble() %>%
st_as_sf() %>% st_transform(crs = 4326) %>%
ggplot() +
geom_sf(aes(fill = total_vaccinations), color = "white") +
scale_fill_gradient2_tableau(
palette = "Sunset-Sunrise Diverging",
na.value = "lightgrey",
guide = "colourbar",
labels = unit_format(unit = "M", scale = 1e-6)
) +
theme_map() +
facet_wrap(~month_col) +
theme(strip.background = element_blank(),
strip.text = element_text(face = "bold", size = 14),
legend.position = "right")