I tried to do the example given on github std::simd but my vectorised version ends up being 2-3 times as slow. How to use it correctly?
The documentation seems lacking, with not enough examples. No constructors are listed etc. I'm sure I'm probably using it in a wrong way, but with the limited documentation I don't know how to proceed.
g++ -o test test.cpp --std=c++2a -O0
#include <array>
#include <chrono>
#include <cstdlib>
#include <experimental/simd>
#include <iostream>
#include <random>
using std::experimental::native_simd;
using Vec3D_v = std::array<native_simd<float>, 3>;
native_simd<float> scalar_product(const Vec3D_v& a, const Vec3D_v& b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
using Vec3D = std::array<float, 3>;
float scalar_product(const std::array<float, 3>& a, const std::array<float, 3>& b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
int main(){
constexpr std::size_t VECREG_SIZE = native_simd<float>::size();
std::array<Vec3D, VECREG_SIZE * 1000> arr;
std::array<Vec3D_v, VECREG_SIZE * 1000> arr_v;
std::random_device rd;
std::mt19937 generator(rd());
std::uniform_real_distribution<float> distribution(0.f, 1.f);
for( std::size_t i = 0; i < arr.size(); ++i ){
arr[i] = {distribution(generator), distribution(generator), distribution(generator)};
arr_v[i] = {distribution(generator), distribution(generator), distribution(generator)};
}
float result = 0.f;
auto start = std::chrono::high_resolution_clock::now();
for( std::size_t i = 1; i < arr.size(); ++i ){
result += scalar_product(arr_v[i-1], arr_v[i])[0];
}
auto end = std::chrono::high_resolution_clock::now();
auto elapsed = end - start;
std::cout << "VC: " << elapsed.count() << '\n' << std::endl;
result = 0;
start = std::chrono::high_resolution_clock::now();
for( std::size_t i = 1; i < arr.size(); ++i ){
result += scalar_product(arr[i-1], arr[i]);
}
end = std::chrono::high_resolution_clock::now();
elapsed = end - start;
std::cout << "notVC: " << elapsed.count() << '\n';
return EXIT_SUCCESS;
}
Problem 1: There is an initial cost when using SIMD instructions. Take your code, and loop it three times (I compile with
-O3
, and printresult
otherwise most code is removed):The assembly of the main loop for the
_v
version now reads:Problem 2: At each turn of the loop, you translate the
native_simd<float>
result into afloat
by using the[0]
operator. This could have dire consequences—but the compiler is clever enough not to do it, as the above assembly shows.Problem 3: As we can see,
native
just instructs the compiler to put the values in SIMD registers. There's not much gain in doing that: Where is the multiple data side of things here? What you want to do is pack your 3D vector into a single SIMD register, and rewrite your loop to accumulate each dimension of the scalar product in one component. Finally, you'd take the sum of all the components:and
Running this, we have:
And the assembly of the main loop is that beautiful piece:
Here, each
%xmm
register holds the 3 float values at once. Also, the compiler heavily optimizes the second loop to use AVX instructions, hence the gain is not all that important (but still existing!).Complete code: