I am using LBPH algorithm for face detection. The part of collecting the data and training is working fine but in the testing part, there is an error
This is code for testing
import cv2
import numpy as np
import webbrowser
face_classifier = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
def face_detector(img, size=0.5):
faces = ()
# Convert image to grayscale
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow('Printe1r', gray )
if np.count_nonzero(gray) >= 0:
print("in face detector")
faces = face_classifier.detectMultiScale(gray, 1.3, 5)
if faces is ():
return img, []
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,255),2)
roi = img[y:y+h, x:x+w]
roi = cv2.resize(roi, (200, 200))
return img, roi
# Open Webcam
cap = cv2.VideoCapture(0)
print("WebCam opened")
while True:
ret, frame = cap.read()
cv2.imshow('Printe1rwer', frame )
image, face = face_detector(frame)
cv2.imshow('Printe1aas r', image )
print(face)
try:
print("hell1o")
face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
print("hello")
# Pass face to prediction model
# "results" comprises of a tuple containing the label and the confidence value
results = model.predict(face)
print("Helo",results)
if results[1] < 500:
print("in results < 500")
confidence = int( 100 * (1 - (results[1])/400) )
display_string = str(confidence) + '% Confident it is User'
cv2.putText(face, display_string, (100, 120), cv2.FONT_HERSHEY_COMPLEX, 1, (255,120,150), 2)
if confidence > 75:
print("in confidence < 75")
cv2.putText(face, "Hey Vimal", (250, 450), cv2.FONT_HERSHEY_COMPLEX, 1, (0,255,0), 2)
cv2.imshow('Face Recognition', face )
webbrowser.open('')
break
else:
print("in else")
cv2.putText(face, "Locked", (250, 450), cv2.FONT_HERSHEY_COMPLEX, 1, (0,0,255), 2)
cv2.imshow('Face Recognition', face )
except Exception as e:
print(e)
cv2.putText(frame, "No Face Found", (220, 120) , cv2.FONT_HERSHEY_COMPLEX, 1, (0,0,255), 2)
cv2.putText(frame, "Locked", (250, 450), cv2.FONT_HERSHEY_COMPLEX, 1, (0,0,255), 2)
cv2.imshow('Face Recognition', frame )
pass
if cv2.waitKey(1) == 13: #13 is the Enter Key
break
cap.release()
cv2.destroyAllWindows()
The error I am getting is:
---------------------------------------------------------------------------
error Traceback (most recent call last)
<ipython-input-1-3a076399e5b1> in <module>
34 ret, frame = cap.read()
35 cv2.imshow('Printe1rwer', frame )
---> 36 image, face = face_detector(frame)
37 cv2.imshow('Printe1aas r', image )
38 print(face)
<ipython-input-1-3a076399e5b1> in face_detector(img, size)
14 if np.count_nonzero(gray) >= 0:
15 print("in face detector")
---> 16 faces = face_classifier.detectMultiScale(gray, 1.3, 5)
17
18 if faces is ():
error: OpenCV(4.2.0) C:\projects\opencv-python\opencv\modules\objdetect\src\cascadedetect.cpp:1689:
error: (-215:Assertion failed) !empty() in function 'cv::CascadeClassifier::detectMultiScale'`
Could somebody help me out?? I am using the OpenCV version 4.2.0 One thing is the value of the variable gray in the face detector function is always a numpy array with all values as zero. I have checked that but it is always zero.
I've tested the first part of your code. It seems to be working, printing
gray
I get:Apart from correcting
()
with==
as suggested by the interpreter, I would check:img
that comes in face detector is nonzero (just print it, mine is ok).cap = cv2.VideoCapture(0)
(do you have multiple webcams attached?)if frame:
block just afterret, frame = cap.read()
. Probably only the first frame is None and it is giving you all the problems.If the above are ok, the only suspect remains
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
...A side note:
ret, frame = cap.read()
reads all the input continuously from the camera, but the pc may be slower than your algorithm in processing every frame. I usually avoid the creation of a long buffer using a trick. After you solve the above, have a look at this.