I have a big pandas dataframe (1 million rows), and I need better performance in my code to process this data.
My code is below, and a profiling analysis is also provided.
Header of the dataset:
key_id, date, par1, par2, par3, par4, pop, price, value
For each key, we have a row with every of the 5000 dates possibles
There is 200 key_id * 5000 date = 1000000 rows
Using different variables var1, ..., var4, I compute a value for each row, and I want to extract the top 20 dates with best value for each key_id, and then compute the popularity of the set of variables used.
In the end, I want to find the variables which optimize this popularity.
def compute_value_col(dataset, val1=0, val2=0, val3=0, val4=0):
dataset['value'] = dataset['price'] + val1 * dataset['par1'] \
+ val2 * dataset['par2'] + val3 * dataset['par3'] \
+ val4 * dataset['par4']
return dataset
def params_to_score(dataset, top=10, val1=0, val2=0, val3=0, val4=0):
dataset = compute_value_col(dataset, val1, val2, val3, val4)
dataset = dataset.sort(['key_id','value'], ascending=True)
dataset = dataset.groupby('key_id').head(top).reset_index(drop=True)
return dataset['pop'].sum()
def optimize(dataset, top):
for i,j,k,l in product(xrange(10),xrange(10),xrange(10),xrange(10)):
print i, j, k, l, params_to_score(dataset, top, 10*i, 10*j, 10*k, 10*l)
optimize(my_dataset, 20)
I need to enhance perf
Here is a %prun output, after running 49 params_to_score
ncalls tottime percall cumtime percall filename:lineno(function)
98 2.148 0.022 2.148 0.022 {pandas.algos.take_2d_axis1_object_object}
49 1.663 0.034 9.852 0.201 <ipython-input-59-88fc8127a27f>:150(params_to_score)
49 1.311 0.027 1.311 0.027 {method 'get_labels' of 'pandas.hashtable.Float64HashTable' objects}
49 1.219 0.025 1.223 0.025 {pandas.algos.groupby_indices}
49 0.875 0.018 0.875 0.018 {method 'get_labels' of 'pandas.hashtable.PyObjectHashTable' objects}
147 0.452 0.003 0.457 0.003 index.py:581(is_unique)
343 0.193 0.001 0.193 0.001 {method 'copy' of 'numpy.ndarray' objects}
1 0.136 0.136 10.058 10.058 <ipython-input-59-88fc8127a27f>:159(optimize)
147 0.122 0.001 0.122 0.001 {method 'argsort' of 'numpy.ndarray' objects}
833 0.112 0.000 0.112 0.000 {numpy.core.multiarray.empty}
49 0.109 0.002 0.109 0.002 {method 'get_labels_groupby' of 'pandas.hashtable.Int64HashTable' objects}
98 0.083 0.001 0.083 0.001 {pandas.algos.take_2d_axis1_float64_float64}
49 0.078 0.002 1.460 0.030 groupby.py:1014(_cumcount_array)
I think I could split the big dataframe in small dataframe by key_id, to improve the sort time, as I want to take the top 20 dates with best value for each key_id, so sorting by key is just to separate the different keys.
But I would need any advice, how can I improve the efficience of this code, as I would need to run thousands of params_to_score ?
EDIT: @Jeff
Thanks a lot for your help!
I tried using nsmallest instead of sort & head, but strangely it is 5-6 times slower, when I benchmark the two following functions:
def to_bench1(dataset):
dataset = dataset.sort(['key_id','value'], ascending=True)
dataset = dataset.groupby('key_id').head(50).reset_index(drop=True)
return dataset['pop'].sum()
def to_bench2(dataset):
dataset = dataset.set_index('pop')
dataset = dataset.groupby(['key_id'])['value'].nsmallest(50).reset_index()
return dataset['pop'].sum()
On a sample of ~100000 rows, to_bench2 performs in 0.5 seconds, while to_bench1 takes only 0.085 seconds on average.
After profiling to_bench2, I notice many more isinstance call, compared to before, but I do not know from where they come from...
The way to make this significantly faster is like this.
Create some sample data
Define the
compute_val_column
like you haveThese are the cases (this you prob want a list of tuples), e.g. the cartesian product of all of the cases that you want to feed into the above function
Create a new data frame that has the full set of values, keyed by each of the parms). This is basically a broadcasting operation.
Here's the magic. Groupby by whatever columns you want, including parm as the first one (or possibly multiple ones). Then do a partial sort (this is what nlargest does); this is more efficient that sort & head (well it depends on the group density a bit). Sum at the end (again by the groupers that we are about, as you are doing a 'partial' reduction)