I'm writing an agar.io clone. I've lately seen a lot of suggestions to limit use of records (like here), so I'm trying to do the whole project only using basic maps.*
I ended up creating constructors for different "types" of bacteria like
(defn new-bacterium [starting-position]
{:mass 0,
:position starting-position})
(defn new-directed-bacterium [starting-position starting-directions]
(-> (new-bacterium starting-position)
(assoc :direction starting-directions)))
The "directed bacterium" has a new entry added to it. The :direction entry will be used to remember what direction it was heading in.
Here's the problem: I want to have one function take-turn that accepts the bacterium and the current state of the world, and returns a vector of [x, y] indicating the offset from the current position to move the bacterium to. I want to have a single function that's called because I can think right now of at least three kinds of bacteria that I'll want to have, and would like to have the ability to add new types later that each define their own take-turn.
A Can-Take-Turn protocol is out the window since I'm just using plain maps.
A take-turn multimethod seemed like it would work at first, but then I realized that I'd have no dispatch values to use in my current setup that would be extensible. I could have :direction be the dispatch function, and then dispatch on nil to use the "directed bacterium"'s take-turn, or default to get the base aimless behavior, but that doesn't give me a way of even having a third "player bacterium" type.
The only solution I can think of it to require that all bacterium have a :type field, and to dispatch on it, like:
(defn new-bacterium [starting-position]
{:type :aimless
:mass 0,
:position starting-position})
(defn new-directed-bacterium [starting-position starting-directions]
(-> (new-bacterium starting-position)
(assoc :type :directed,
:direction starting-directions)))
(defmulti take-turn (fn [b _] (:type b)))
(defmethod take-turn :aimless [this world]
(println "Aimless turn!"))
(defmethod take-turn :directed [this world]
(println "Directed turn!"))
(take-turn (new-bacterium [0 0]) nil)
Aimless turn!
=> nil
(take-turn (new-directed-bacterium [0 0] nil) nil)
Directed turn!
=> nil
But now I'm back to basically dispatching on type, using a slower method than protocols. Is this a legitimate case to use records and protocols, or is there something about mutlimethods that I'm missing? I don't have a lot of practice with them.
* I also decided to try this because I was in the situation where I had a Bacterium record and wanted to create a new "directed" version of the record that had a single field direction added to it (inheritance basically). The original record implemented protocols though, and I didn't want to have to do something like nesting the original record in the new one, and routing all behavior to the nested instance. Every time I created a new type or changed a protocol, I would have to change all the routing, which was a lot of work.
You can use example-based multiple dispatch for this, as explained in this blog post. It is certainly not the most performant way to solve this problem, but arguably more flexible than multi-methods as it does not require you to declare a dispatch-method upfront. So it is open for extension to any data representation, even other things than maps. If you need performance, then multi-methods or protocols as you suggest, is probably the way to go.
First, you need to add a dependency on
[bluebell/utils "1.5.0"]and require[bluebell.utils.ebmd :as ebmd]. Then you declare constructors for your data structures (copied from your question) and functions to test those data strucutres:Now we are going to register those datastructures as so called arg-specs so that we can use them for dispatch:
For each arg-spec, we need to declare a few example values under the
:poskey, and a few non-examples under the:negkey. Those values are used to resolve the fact that adirected-bacteriumis more specific than just abacteriumin order for the dispatch to work properly.Finally, we are going to define a polymorphic
take-turnfunction. We first declare it, usingdeclare-poly:And then, we can provide different implementations for specific arguments:
Here, the
::ebmd/any-argis an arg-spec that matches any argument. The above approach is open to extension just like multi-methods, but does not require you to declare a:typefield upfront and is thus more flexible. But, as I said, it is also going to be slower than both multimethods and protocols, so ultimately this is a trade-off.Here is the full solution: https://github.com/jonasseglare/bluebell-utils/blob/archive/2018-11-16-002/test/bluebell/utils/ebmd/bacteria_test.clj