In C++, a famous parsing ambiguity happens with code like
x<T> a;
Is it if T is a type, it is what it looks like (a declaration of a variable a of type x<T>, otherwise it is (x < T) > a (<> are comparison operators, not angle brackets).
In fact, we could make a change to make this become unambiguous: we can make < and > nonassociative. So x < T > a, without brackets, would not be a valid sentence anyway even if x, T and a were all variable names.
How could one resolve this conflict in Menhir? At first glance it seems we just can't. Even with the aforementioned modification, we need to lookahead an indeterminate number of tokens before we see another closing >, and conclude that it was a template instantiation, or otherwise, to conclude that it was an expression. Is there any way in Menhir to implement such an arbitrary lookahead?
AFAIK C++'s template syntax is a well-known example of real-world non-LR grammar. Strictly speaking, it is not LR(k) for any finite k... So C++ parsers are usually hand-written with hacks (like clang) or generated by a GLR grammar (LR with branching). So in theory it is impossible to implement a complete C++ parser in Menhir, which is LR.
However even the same syntax for generics can be different. If generic types and expressions involving comparison operators never appear under the same context, the grammar may still be LR compatible. For example, consider the rust syntax for variable declaration (for this part only):
The
:token indicates that a type, rather than an expression follows, so in this case the grammar can be LR, or even LL (not verified).So the final answer is, it depends. But for the C++ case it should be impossible to implement the syntax in Menhir.