I have created ragged tensors from python lists as below.
> list_a=tf.ragged.constant(list_a)
> list_b=tf.ragged.constant(list_b)
Checking the shapes gives me:
list_a.shape
TensorShape([10555, None, None])
list_b.shape
TensorShape([10555])
dataset = tf.data.Dataset.from_tensor_slices((list_a, list_b))
dataset
TensorSliceDataset shapes: ((None, None), ()), types: (tf.float64, tf.float32)>
train_data=dataset.take(9000).batch(5)
train_data
BatchDataset shapes: ((None, None, None), (None,)), types: (tf.float64, tf.float32)>
My problem is I cannot figure out how to specify the input_shape in a SimpleRNN layer with this type of dataset. Thank you,