Intersection of a convex polygon and a moving circle

362 Views Asked by At

I have a straight line which intersects a convex polygon in 2D plane. There exists a circle with constant radius. The center of circle is moving on this line. So at first the polygon and circle don't intersect with each other, as the circle gets closer to the polygon the intersection increases and then decreases as they go further from each other. I want to prove the area of the intersection of the convex polygon and circle doesn't have local minima(as the circle moves on the line).

1

There are 1 best solutions below

0
On

Interesting problem. Please post solution once you find it. My approach would be to take a similar route to Fortunes algorithm to build a Voronoi graph - meaning I would consider "events" that are happening when the circle traverses a convex polygon.

Basically to better understand the problem, consider the restriction that the circle is traveling on straight line - why is that important - look at counter examples. Then look when will this fail if poly is not convex?

The events that I would consider would be an entry/exit of a poly vertex into circle, and entry exit of an poly edge from/into the circle. Then keep track of area increasing or decreasing through each event, and show that it is necessarily monotonic.