I would like to store hashes for approximately 2 billion strings. For that purpose I would like to use as less storage as possible.
Consider an ideal hashing algorithm which returns hash as series of hexadecimal digits (like an md5 hash). As far as i understand the idea this means that i need hash to be not less and not more than 8 symbols in length. Because such hash would be capable of hashing 4+ billion (16 * 16 * 16 * 16 * 16 * 16 * 16 * 16) distinct strings.
So I'd like to know whether it is it safe to cut hash to a certain length to save space ? (hashes, of course, should not collide)
Yes/No/Maybe - i would appreciate answers with explanations or links to related studies.
P.s. - i know i can test whether 8-character hash would be ok to store 2 billion strings. But i need to compare 2 billion hashes with their 2 billion cutted versions. It doesn't seem trivial to me so i'd better ask before i do that.
Whether or not its safe to store x values in a hash domain only capable of representing 2x distinct hash values depends entirely on whether you can tolerate collisions.
Hash functions are effectively random number generators, so your 2 billion calculated hash values will be distributed evenly about the 4 billion possible results. This means that you are subject to the Birthday Problem.
In your case, if you calculate 2^31 (2 billion) hashes with only 2^32 (4 billion) possible hash values, the chance of at least two having the same hash (a collision) is very, very nearly 100%. (And the chance of three being the same is also very, very nearly 100%. And so on.) I can't find the formula for calculating the probable number of collisions based on these numbers, but I suspect it is a huge number.
If in your case hash collisions are not a disaster (such as in Java's HashMap implementation which deals with collisions by turning the hash target into a list of objects which share the same hash key, albeit at the cost of reduced performance) then maybe you can live with the certainty of a high number of collisions. But if you need uniqueness then you need either a far, far larger hash domain, or you need to assign each record a guaranteed-unique serial ID number, depending on your purposes.
Finally, note that Keccak is capable of generating any desired output length, so it makes little sense to spend CPU resources generating a long hash output only to trim it down afterwards. You should be able to tell your Keccak function to give only the number of bits you require. (Also note that a change in Keccak output length does not affect the initial output bits, so the result will be exactly the same as if you did a manual bitwise trim afterwards.)