I've written two versions of a lisp function. The main difference between the two is that one is done with recursion, while the other is done with iteration.
Here's the recursive version (no side effects!):
(defun simple-check (counter list)
"This function takes two arguments:
the number 0 and a list of atoms.
It returns the number of times the
atom 'a' appears in that list."
(if (null list)
counter
(if (equal (car list) 'a)
(simple-check (+ counter 1) (cdr list))
(simple-check counter (cdr list)))))
Here's the iterative version (with side effects):
(defun a-check (counter list)
"This function takes two arguments:
the number 0 and a list of atoms.
It returns the number of times the
atom 'a' appears in that list."
(dolist (item list)
(if (equal item 'a)
(setf counter (+ counter 1))
(setf counter (+ counter 0))))
counter)
As far as I know, they both work. But I'd really like to avoid side-effects in the iterative version. Two questions I'd like answered:
- Is it possible to avoid side effects and keep iteration?
- Assuming the answer to #1 is a yes, what are the best ways to do so?
In some ways, the difference between side-effect or no side-effect is a bit blurred. Take the following
loop
version (ignoring thatloop
also has better ways):Is
counter
set at each step, or is it rebound? I. e., is an existing variable modified (like insetf
), or is a new variable binding created (as in a recursion)?This
do
version is very much like the recursive version:Same question as above.
Now the “obvious”
loop
version:There isn't even an explicit variable for the counter. Are there side-effects?
Internally, of course there are effects: environments are created, bindings established, and, especially if there is tail call optimization, even in the recursive version destroyed/replaced at each step.
I see as side effects only effects that affect things outside of some defined scope. Of course, things appear more elegant if you can also on the level of your internal definition avoid the explicit setting of things, and instead use some more declarative expression.